Rough Calculation of the GS Wells requried for this site

Swampscott Hadley Elementary School

Heating & A/C:	GSHP
Ventilation	ASHP

Students:	900
Building Size:	153,855 sf
Well H/C	85 each
Well Ventilation	+35-55 each

Haverhill Consentino Middle School

Proposing to go to all GSHP

Heating & A/C:	GSHP	
Ventilation	GSHP	
Students:	1080	
Building Size:	183,128 sf	
Well H/C	110 each	Projected
Well Ventilation	66 each	Projected
Total Wells	176 each	Projected

	GEOTHERMAL BORE FIELD	SCHEDULE
	QTY CLOSED LOOP BORES	85
	BORES CTR - CTR DISTANCE	30'
	BORE FIELD AREA	115,000 SF
	SITE UTILITY GENERAL N	OTES
1.	REFER TO DRAWING MSU5.1 AND MSU5.2 FOR ADDIT	TIONAL GEOTHERMAL

TOWN OF SWAMPSCOTT

10 WHITMAN ROAD, SWAMPSCOTT, MA 01907

•	NO.	DESCRIPTION	DATE
			- <u></u>
	A	B	
OJECT MANUAL.	MECHA	NICAL SITE UTILITY PLAN	J
O PR	DRAWN B	f :	MC/CB
ER T(PROJECT	NO:	19-097-00
REFI	DATE:		9/14/2022
ION,	REVISED:		
MAT	SCALE:		As indicated
AL INFOR		MSU1.0	
DDITION.	Project Pha	RUCTION DOCUMENTS	
FOR A	COPYRIGI PROFI	HT © 2022 BY LAVALLEE/BREN ESSIONAL ASSOCIATION. ALL RIGHTS NO REPRODUCTION WITHOUT PERMIS	isinger Reserved. Ssion.

20	19	18	17	16	15	14	13

Report Objective

- The objective of this report is to provide follow up to several questions related to the Energy Efficiency of the current Consentino MS Project.

- Ground Source Heat Pumps (GSHP) and several other options were considered throughout the design, but ultimately the direction received from the District was to move forward with the current design.

- We have been asked to review the previous information, which is all available in the previous submission to the MSBA, this has been done.
- We were also asked to provide a refreshed review of the HVAC options to see where we would stand today.
- Please note, as previously discussed, HVAC is a very important part of Sustainability, but it is not the only part.
- There are many other systems involved and this design is a very efficient design with a target EUI under 30.

Ground Source Heat Pump Project Costs

- This does not take into account any potential adjustments to the overall construction duration.

- Based on Experience the installation of Geothermal Wells requires a substantial amount of space. For this project it would have to be studied, but it is believed that we may need to encroach onto the Silver Hill ES site during the construction period.

- This will require the existing Consentino MS to be vacated at the start of Construction.

- We will have to relocate Staff and Student, and could require some SilverHill parking at a remote location

- The calculations below doe not account for any costs from the above

Current Building area	183,128	sf				
				Current Design	Proposed Design	
Item	Unit		Unit Cost	Cost	Cost	Delta
HVAC System Costs						
Increased Building Size	1725	gsf	\$473.17/sf	\$0	\$816,218	\$816,218
Added cost on existing building	183,128	sf	\$25.00/sf	\$0	\$4,578,200	\$4,578,200
Current HVAC Cost	183,128	sf	\$87.50/sf	\$16,023,700	\$16,023,700	\$0
HVAC & Wellfield Costs	183,128	sf	\$25.00/sf	\$0	\$4,578,200	\$4,578,200
Cost for temporary System (1 year)	1	ls				EXCLUDED
				HVAC Premium to b	e paid	\$9,972,618
Potential Additional Costs to change design at this ti	me	т. т				
Designer Fees	1	ls	\$50,000	\$0	\$50,000	\$50,000
Drill Test well	1	Each	\$50 <i>,</i> 000	Ş0	\$50,000	\$50,000
Project Start Delay Assume 3 months? Add 1% for						
escalation for the 3 months	\$125,097,100		1.00%	\$0	\$1,250,971	\$1,250,971
Design / OPM Fees for 3 months	3	Mnth	\$50,000/mnth	\$0	\$150,000	\$150,000
				Potential additional	Costs	\$1,500,971
				TOTAL COST TO AD	JUST DESIGN	\$11,473,589
POTENTIAL SAVINGS	1					
Mass Saves						
Current Path 2 Tier 1 (\$1.25/sf)	183,128	sf	(\$1.25)/sf	(\$228,910)	(\$228,910)	\$0
Potential HP savings (Heating load)	375	ton	(\$4,500)/ton	\$0	(\$1,687,500)	(\$1,687,500)
Additional energy model? If we can even do it?					\$29,990	\$29,990
Federal Tax Savings						
Assume 30% of Geothermal System cost	\$20,601,900		-30%	\$0	(\$6,180,570)	(\$6,180,570)
						(1
				Potential Savings		(\$7,838,080)
				Project Net Cost		\$3,635,509
					Construction Cost	
				Current Value	Potential Value	Delta
		Constru	uction Cost	\$125,097,100	\$136,570,689	\$11,473,589
		To stay	on budget we wou	uld have to value eng	gineer	\$11,473,589

This does not take into consideration the long term operational cost, which would be less with a GSHP System.

This does not take into consideration life cycle analysis.

This does not take into account the cost to relocate the existing school population during construction

Ground Source Heat Pump Costs

Evaluation of Energy cost, annual Maintenance, & Life Cycle Analysis

Current System

1. Displacement Ventilation Diffusers with Radiant Cooling/Heating panels.

2. Gas-Fired Heating / Direct Expansion Cooling VAV Ventilating Unites with Energy Recovery with Terminal VAV Boxes with CO2 Controls

3. High-Efficiency Air Cooled Chiller Plant

4. High-Efficiency Gas-Fired Condensing Boiler Plant

Proposed System (Based on a similar project of 180,000sf adjusted)

1. Displacement Ventilation Diffusers with Radiant Cooling/Heating panels.

2. CHW/HHW DOAS RTUs ERV & Terminal VAV w/ DCV

3. High-Efficiency Ground Source Heat Pumps (GSHP) Chiller/Heater Plant w/ Geothermal Well Field.

4. Backup Side-Stream Electric Boiler Plant

Equipment Expected life 30 years

	CUR	RENT S	/STEM	PROP	Project Annual			
Item	Unit		Cost / Year	Unit		Cost / Year	Savings	
Energy Costs								
Gas	35,751	therms	\$43,185	-	therms	\$0		
Electric	770,928	kWh	\$190,083	1118231	kWh	\$241,507		
Total Cost of Energy			\$233,268			\$241,507	(\$8,239)	
Annual Maintenance Costs	770,928							
Annual Maintenance Costs			\$143,273			\$106,400	\$36,873	
Expected Equipment Replacement Costs								
Existing Equipment Replacement (20 year)	\$2,864,000		\$143,200				\$143,200	
Proposed Equipment Replacement (30 year)				\$3,116,250		\$103,875	(\$103,875)	
Annual projected costs (energy, maint & Replacement)			\$519,741			\$451,782	\$67,959	
Potential Savings / year**	\$67,959	1	Net Cost from Previo	\$3,635,509				

53.50 Years

**Does not include Solar Considerations

Payback on investment **

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5

DORE + WHITTIER MASSACHUSETTS 260 MERRIMAC STREET BUILDING 7, 2ND FLOOR NEWBURYPORT, MA 01950 P: (978) 499-2999 212 BATTERY STREET BURLINGTON, VT 05401 P: (802) 863-1428 S Haverhill Consentino R 685 WASHINGTON STREET HAVERHILL, MA PROJECT NUMBER: 21-0818 SEAL AND SIGNATURE: TITLE DATE ISSUE TITLE AND DATE: DESIGN DEVELOPMENT 04.20.2023 **COPYRIGHT** © 2023 by Dore & Whittier Architects, Inc. (D+W). These documents are D+W's instruments of service and as such, D+W retains all copyrights, common law, and statutory rights. Use of these documents without D+W's express written permission will result in copyright infringement. В С D ORIENTATION AND SCALE: SCALE: 1/16"=1'-0" GRAPHIC SCALE PROJECT NORTH SHEET TITLE: ROOF KEY PLAN SHEET NUMBER:

Solar Power Considerations

- Early on this was reviewed and at the time the district directed the design team to provide a building which would be solar ready, but that we would not install panels at this time.

The Current design provides

- 2 conduits run from the Electric room up to the roof, and a 600A breaker for Future PV Connection.

- We have not included any additional items such as separate PV Metering.
- During the PSR phase we did evaluate multiple building options for PV.
- We will be using this information to supply the initial thoughts on our reconsideration.
- Reviewing the PSR options the building which is closes to our current building is option N.1080.A-3.
- This building was 188,903 sf with a roof area of approx 83,523 sf and available PV area of 41,762 sf.

If you are to proceed with Solar, there are 2 main options to consider

1. Having the contractor purchase and install the panels. This would provide higher up front costs, but you receive the benefits of the energy generation as well as the \$ savings for that generation.

2. Having a 3rd party come in after the contractor and they install their solar on your building. This would provide a lower up front cost and while you receive the benefit of the energy being generated locally, the cost of that energy would still be the City's responsibility.

Item	Unit		Unit Cost	Current Cost	Potential Cost		Delta
Approximate Building Size	183,128	sf					
Potential area for Solar	35,000	sf	\$37.00/sf	\$0	\$1,295,000		\$1,295,000
(A Full Solar Study would be required to co	onfirm exact area)						
Designed Free		1-				TRO	
Designer Fees	1	15				IRD	
Project Start Delay Assume 3 months? Add							
1% for escalation for the 3 months	\$125,097,100		1.00%			TBD	
Design / OPM Fees for 3 months?						TBD	
				Premium to be paid			\$1,295,000
				Current Cost	Potential Cost		Delta
	Construction Cost \$125,097,100 \$126,392,100						
		To stay	y on budget we wou	uld have to value eng	ineer		\$1,295,000

Item	Unit		Potential AC Output	% of Electric Power
Approximate Building Size	183,128	sf		
Potential area for Solar	35,000	sf	769,991 kWh	
(A Full Solar Study would be required to co	onfirm exact area)			
Anticipated Building Electric requirement			770,925 kWh	99.88%
Potential Building Electric requirements (GSH	P)		1,118,231 kWh	68.86%
Additional area required (Parking lot?)	16,000.00	sf	351,996 kWh	

NOTES:

- Current design, if solar was added could be close to electric neutral, but would still have gas for heating.

- Proposed Design with GSHP, would require additional solar to be net zero energy.

- <u>Net zero energy is not net zero cost</u>. To determine cost a Study would need to be done.

- If you were to go all electric with Heat pumps the solar on the roof would not provide sufficient power to the building.

- To provide power you would need to expand to the parking lot area. Providing approximately 16,000 sf of additional panels.

- The addition of solar to The parking lots would have substantial cost for structures to support The panels in addition to The solar cost.

- The addition of solar to the parking lots would negatively impact the number of available parking spaces.