Photovoltaic Array System Study for

Consentino Middle School Haverhill, MA

October 24, 2023

Prepared for:

Dore & Whittier 260 Merrimac St. Bldg 7 Newburyport MA 01950

212 Battery St. Burlington, VT 05401

Prepared by:

GGD Consulting Engineers, Inc. 375 Faunce Corner Road, Suite D Dartmouth, MA 02747 Ph: 508-998-5700

Fax: 508-998-0883

TABLE OF CONTENTS

- I. EXECUTIVE SUMMARY
- II. TECHNICAL
- III. ECONOMIC EVALUATION
- IV. APPENDIX
 - Appendix A
 - Appendix B
 - **Appendix C**
 - Appendix D

I. EXECUTIVE SUMMARY

This Report will include four options **Building + Canopies & Building Only** arrays both will also be presented with and without the SMART solar incentive program. The Solar Massachusetts Renewable Energy Target (SMART) is DOER's incentive program established to support the development of solar in Massachusetts, This is a falling block program and estimated incentives have been calculated using block 14 of 16.

Building + Canopies: The Constentino Middle School has a potential photovoltaic layout consisting of 4 groups of panels, 2 roof mounted and 2 parking canopies, totaling a quantity of 1,568 panels (430W each) providing approximately 206.4KWdc roof mounted & 467.84KWdc for the canopies totaling 674.24KWdc power. This would produce an estimated annual production of 758,839 kilowatt hours (kWH) per year or approximately 95.7% of the yearly building consumption.

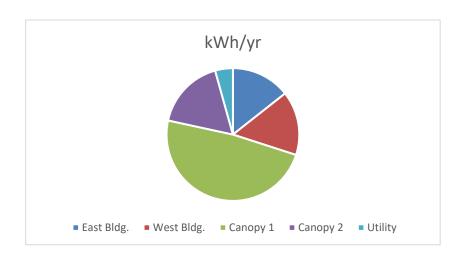
Under direct ownership the Town's cost for the **Building + Canopies (Not on SMART program)** PV System is approximately \$3.5/Watt for roof mounted systems and \$4.5/Watt of Canopy systems amounting to \$2,827,680 up front cost. Over a 20-year period an estimated \$3,642,420 in electrical energy cost savings would be produced. The payback analysis indicates a 15-year simple payback and a discounted payback of 17-years.

Under direct ownership the Town's cost for the **Building + Canopies (On SMART program)** PV System is approximately \$3.5/Watt for roof mounted systems and \$4.5/Watt of Canopy systems amounting to \$2,827,680 + \$1,080,000 (for battery storage & application fees required for SMART systems over 500KW). For a total up front cost of \$3,907,680 . Over a 20-year period an estimated \$3,642,420 in electrical energy cost savings would be produced and an estimate \$51,190/yr in SMART program incentives. A demand charge reduction has also been included in our calculations. The payback analysis indicates a 14-year simple payback and a discounted payback of 17-years.

Building Only: The Constentino Middle School has a potential photovoltaic layout consisting of 2 groups of panels totaling a quantity of 480 panels (430W each) providing approximately 206.4KWdc power. This would produce an estimated annual production of 236,308 kilowatt hours (kWH) per year or approximately 29.8% of the yearly building consumption.

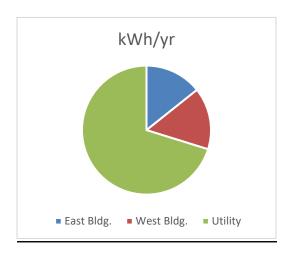
Under direct ownership the Town's cost for the Building Only (Not on SMART program) PV System is approximately \$3.5/Watt amounting to \$722,400. Over a 20-year period an estimated \$1,134,278 in electrical energy cost savings would be produced. The payback analysis indicates a 13-year simple payback and a 15-year discounted payback.

Under direct ownership the Town's cost for the Building Only **(On SMART program)** PV System is approximately \$3.5/Watt amounting to \$722,400 + \$15000 (approximate application fees) for a total up front cost of \$737,400. Over a 20-year period an estimated \$1,134,278 in electrical energy cost savings would be produced and an estimate \$10,470/yr in SMART program incentives. The payback analysis indicates a 11-year simple payback and a 13-year discounted payback.


Currently there are tax credits available under the Inflation Reduction Act for 30% of the system's cost. Please see table 2 in the Economic Analysis section for estimated investment cost and payback period after tax credits are applied.

II. <u>TECHNICAL</u>

The buildings potential system size and production were estimated using REVIT to layout potential panels and PV Watts which is provided by the National Renewable Energy Laboratory (NREL). Sunpower 430W panels were used in this model as they have a high efficiency, refer to Appendix D for panel cutsheet. A set back from roof edges of 10 feet was used as this is best practice utilizing Unirac's recommendations. On the flat roof arrays a self-ballasted racking system would be suggested limiting penetrations to the new roof. PV Watts is utilized to estimate kWh per month and year based on system size, location, orientation, system losses and array tilt, this information has been extracted, see tables below. A panel layout can be found in Appendix B and PV Watts Calculations in Appendix C.


Building + Canopies

	Group East Building	Group West Building	Group Canopy 1	Group Canopy 2A	Group Canopy 2B	Total	Building Consumption per energy model
Panel QTY	231	249	780	154	154	1568	N/A
kW	99.33	107.07	335.4	66.22	66.22	674.24	N/A
Cost (PV)	\$347,655	\$374,745	\$1,509,300	\$297,990	\$297,990	\$2,827,680	N/A
Cost (Battery)						\$1,050,000	
kWh/year	113,338	122,970	381,746	75,372	65,413	758,839	793,030
Usage %	14.29%	15.51%	48.14%	9.50%	8.25%		95.69%

Building Only

	Group	Group	Total	Building Consumption
	East Building	West Building		per energy model
Panel QTY	231	249	480	N/A
kW	99.33	107.07	206.4	N/A
Cost	\$347,655.00	\$374,745.00	\$722,400.00	N/A
kWh/year	113,338	122,970	236,308	793,030
Usage %	14.29%	15.51%		29.80%

III. ECONOMIC EVALUATION

Under direct ownership the Town would pay for the design and installation of the photovoltaic system at an approximate cost of \$3.5/watt for roof top and \$4.5/watt canopy arrays. If a battery storage system is required, the Town would pay approximately \$1,050,000. Payback analysis takes into account initial investment, operation, maintenance and repair costs and utility rebate. See Table 1 and Appendix A for full life cycle analysis.

Table 1(Initial Cost)

	System Size	Investment Cost	Discounted Payback
Roof & Canopies	674.24 KW dc	\$2,827,680	17 years
(No SMART)			
Roof, Canopies, &	674.24 KW dc	\$3,907,680	17 years
Battery (SMART)			-
Roof Only	206.4 KW dc	\$722,400	15 years
Roof Only	206.4 KW dc	\$737,400	13 years
(SMART)			

Table 2 (Inflation Reduction Act included)

	System Size	Investment Cost after IRA	Discounted Payback
Roof & Canopies	674.24 KW dc	\$1,979,379	12 years
(No SMART)			
Roof, Canopies, &	674.24 KW dc	\$2,744,386	12 years
Battery (SMART)			
Roof Only	206.4 KW dc	\$505,680	11 years
Roof Only	206.4 KW dc	\$520,680	9 years
(SMART)			

IV. <u>APPENDIX</u>

Appendix A

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 1 PV Roof and Canopies (No SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

June 1, 2024

Date of Study: Fri Oct 13 08:51:52 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Public Investment or Regulatory Analysis Analysis Purpose:

Analyst: Jeff Bagdasarian

Service Date: June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Discounting

Base Date:

End-of-Year Convention:

Comparison of Present-Value Costs PV Life-Cycle Cost

	Base Case	Alternative	Savings from Alternative
Initial Investment Costs:			
Capital Requirements as of Base Date	\$0	\$2,827,680	-\$2,827,680
Future Costs:			
Energy Consumption Costs	\$3,762,561	\$162 , 211	\$3,600,350
Energy Demand Charges	\$0	\$0	\$0
Energy Utility Rebates	\$0	\$0	\$0
WaterCosts	\$0	\$0	\$0
Recurring and Non-Recurring OM&R Costs	\$0	\$143,999	-\$143,999
Capital Replacements	\$0	\$90,000	-\$90,000
Residual Value at End of Study Period	\$0	\$0	\$0
Subtotal (for Future Cost Items)	\$3,762,561	\$396,210	\$3,366,350
Total PV Life-Cycle Cost	\$3,762,561	\$3,223,890	\$538,670

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$3,456,350

- Increased Total Investment \$2,917,680

Net Savings

\$538,670

Savings-to-Investment Ratio (SIR)

SIR = 1.18

Adjusted Internal Rate of Return

AIRR = 3.27%

Energy

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year 1

Discounted Payback occurs in year 17

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 793,030.0 kWh 34,189.0 kWh 758,841.0 kWh 15,174,742.4 kWh

Energy Savings Summary (in MBtu)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 2,705.9 MBtu 116.7 MBtu 2,589.3 MBtu 51,778.4 MBtu

Annual

Emissions Reduction Summary

----Average

Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg
Total:				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg

Emissions----

Life-Cycle

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 1T PV Roof and Canopies Tax (No SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

Date of Study: Fri Oct 13 08:55:09 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Public Investment or Regulatory Analysis Analysis Purpose:

Analyst: Jeff Bagdasarian

June 1, 2024 Service Date: June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Discounting

Base Date:

End-of-Year Convention:

Comparison of Present-Value Costs PV Life-Cycle Cost

	Base Case	Alternative	Savings from Alternative	
Initial Investment Costs:				
Capital Requirements as of Base Date	\$0	\$1,979,379	-\$1,979,379	
Future Costs:				
Energy Consumption Costs	\$3,762,561	\$162,211	\$3,600,350	
Energy Demand Charges	\$0	\$0	\$0	
Energy Utility Rebates	\$0	\$0	\$0	
WaterCosts	\$0	\$0	\$0	
Recurring and Non-Recurring OM&R Costs	\$0	\$143,999	-\$143,999	
Capital Replacements	\$0	\$90,000	-\$90,000	
Residual Value at End of Study Period	\$0	\$0	\$0	
Subtotal (for Future Cost Items)	\$3,762,561	\$396,210	\$3,366,350	
Total PV Life-Cycle Cost	\$3,762,561	\$2,375,589	\$1,386,971	
N (O ' C A)((' O	B			

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$3,456,350

- Increased Total Investment \$2,069,379

Net Savings

\$1,386,971

Savings-to-Investment Ratio (SIR)

SIR = 1.67

Adjusted Internal Rate of Return

AIRR = 5.06%

Type

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year

11

Discounted Payback occurs in year 12

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 793,030.0 kWh 34,189.0 kWh 758,841.0 kWh 15,174,742.4 kWh

Savings

Savings

Energy Savings Summary (in MBtu)

Base Case

Energy -----Average Annual Consumption----- Life-Cycle

Alternative

Electricity 2,705.9 MBtu 116.7 MBtu 2,589.3 MBtu 51,778.4 MBtu

Emissions Reduction Summary

Energy	Average	Annual	Emissions	Life-Cycle
Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg
Total:				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 2 PV Roof and Canopies (With SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

Date of Study: Fri Oct 13 08:53:04 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Public Investment or Regulatory Analysis Analysis Purpose:

Analyst: Jeff Bagdasarian

Base Date: June 1, 2024

June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Discounting

Service Date:

End-of-Year Convention:

Comparison of Present-Value Costs PV Life-Cycle Cost

	Base Case	Alternative	Savings from Alternative
Initial Investment Costs:			
Capital Requirements as of Base Date	\$0	\$3,907,680	-\$3,907,680
Future Costs:			
Energy Consumption Costs	\$3,762,561	\$162 , 211	\$3,600,350
Energy Demand Charges	\$0	\$0	\$0
Energy Utility Rebates	\$0	-\$1,407,348	\$1,407,348
WaterCosts	\$0	\$0	\$0
Recurring and Non-Recurring OM&R Costs	\$0	\$143,999	-\$143,999
Capital Replacements	\$0	\$90,000	-\$90,000
Residual Value at End of Study Period	\$0	\$0	\$0
Subtotal (for Future Cost Items)	\$3,762,561	-\$1,011,138	\$4,773,699
Total PV Life-Cycle Cost	\$3,762,561	\$2,896,542	\$866,019
N 40 1 6 AM 41 0			

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$4,863,699

- Increased Total Investment \$3,997,680

Net Savings

\$866,019

Savings-to-Investment Ratio (SIR)

SIR = 1.22

Adjusted Internal Rate of Return

AIRR = 3.41%

Energy

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year

14

Discounted Payback occurs in year 17

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 793,030.0 kWh 34,189.0 kWh 758,841.0 kWh 15,174,742.4 kWh

Energy Savings Summary (in MBtu)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Annual

Electricity 2,705.9 MBtu 116.7 MBtu 2,589.3 MBtu 51,778.4 MBtu

Emissions Reduction Summary

----Average

	, wordge	, amaa	21110010110	Ziio Oyolo
Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg
Total:				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg

Emissions-----

Life-Cycle

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 2T PV Roof and Canopies Tax (SMART)

General Information

File Name:

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study

BLCC5.xml

Date of Study: Fri Oct 13 08:54:17 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Analysis Purpose: Public Investment or Regulatory Analysis

Analyst: Jeff Bagdasarian

Service Date:

June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate: 2.4

Alternative

Savings from Alternative

Discounting Convention:

Base Date:

End-of-Year

June 1, 2024

Comparison of Present-Value Costs PV Life-Cycle Cost

	base Case	Alternative	Savings from Alternative
Initial Investment Costs:			
Capital Requirements as of Base Date	\$0	\$2,744,340	-\$2,744,340
Future Costs:			
Energy Consumption Costs	\$3,762,561	\$162 , 211	\$3,600,350
Energy Demand Charges	\$0	\$0	\$0
Energy Utility Rebates	\$0	-\$1,407,348	\$1,407,348
WaterCosts	\$0	\$0	\$0
Recurring and Non-Recurring OM&R Costs	\$0	\$143,999	-\$143,999
Capital Replacements	\$0	\$90,000	-\$90,000
Residual Value at End of Study Period	\$0	\$0	\$0
Subtotal (for Future Cost Items)	\$3,762,561	-\$1,011,138	\$4,773,699
Total PV Life-Cycle Cost	\$3,762,561	\$1,733,202	\$2,029,359

Base Case

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$4,863,699

- Increased Total Investment \$2,834,340

Net Savings

\$2,029,359

Savings-to-Investment Ratio (SIR)

SIR = 1.72

Adjusted Internal Rate of Return

AIRR = 5.20%

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year

11

Discounted Payback occurs in year 12

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 793,030.0 kWh 34,189.0 kWh 758,841.0 kWh 15,174,742.4 kWh

Energy Savings Summary (in MBtu)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 2,705.9 MBtu 116.7 MBtu 2,589.3 MBtu 51,778.4 MBtu

Annual

Emissions Reduction Summary

----Average

Energy

3,	3			- 7
Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg
Total:				
CO2	261,756.67 kg	11,284.82 kg	250,471.85 kg	5,008,751.27 kg
SO2	74.24 kg	3.20 kg	71.04 kg	1,420.55 kg
NOx	199.87 kg	8.62 kg	191.25 kg	3,824.56 kg

Emissions----

Life-Cycle

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 3 PV Roof Only (No SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

June 1, 2024

Date of Study: Fri Oct 13 08:57:15 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Public Investment or Regulatory Analysis Analysis Purpose:

Analyst: Jeff Bagdasarian

Service Date: June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Discounting

Base Date:

End-of-Year Convention:

Comparison of Present-Value Costs PV Life-Cycle Cost

	Base Case	Alternative	Savings from Alternative
Initial Investment Costs:			
Capital Requirements as of Base Date	\$0	\$722 , 400	-\$722,400
Future Costs:			
Energy Consumption Costs	\$3,762,561	\$2,641,379	\$1,121,182
Energy Demand Charges	\$0	\$0	\$0
Energy Utility Rebates	\$0	\$0	\$0
WaterCosts	\$0	\$0	\$0
Recurring and Non-Recurring OM&R Costs	\$0	\$115 , 200	-\$115,200
Capital Replacements	\$0	\$25,000	-\$25 , 000
Residual Value at End of Study Period	\$0	\$0	\$0
Subtotal (for Future Cost Items)	\$3,762,561	\$2,781,578	\$980,982
Total PV Life-Cycle Cost	\$3,762,561	\$3,503,978	\$258 , 582
Not Sovings from Alternative Com		_	,,

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$1,005,982

- Increased Total Investment \$747,400 _____

\$258,582

Savings-to-Investment Ratio (SIR)

SIR = 1.35

Net Savings

Adjusted Internal Rate of Return

AIRR = 3.93%

Energy

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year

Discounted Payback occurs in year 15

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy ----Average Annual Consumption----Life-Cycle Type **Base Case** Alternative Savings Savings

Electricity 793,030.0 kWh 556,720.0 kWh 236,310.0 kWh 4,725,553.0 kWh

Energy Savings Summary (in MBtu)

Energy ----Average Annual Consumption----Life-Cycle Type Base Case Alternative Savings Savings Electricity 2,705.9 MBtu 1,899.6 MBtu 806.3 MBtu 16,124.3 MBtu

Annual

Emissions Reduction Summary

----Average

Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg
Total:				
CO2	261,756.67 kg	183,757.45 kg	77 , 999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg

Emissions-----

Life-Cycle

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 3T PV Roof Only (Tax No SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

Date of Study: Fri Oct 13 08:58:07 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Analysis Purpose: Public Investment or Regulatory Analysis

Analyst: Jeff Bagdasarian

June 1, 2024 Service Date: June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Alternative

Savings from Alternative

Discounting Convention:

Base Date:

End-of-Year

Comparison of Present-Value Costs PV Life-Cycle Cost

	Dasc Casc	Alternative	Davings nom Alternative
Initial Investment Costs:			
Capital Requirements as of Base Date	\$0	\$505 , 680	-\$505 , 680
Future Costs:			
Energy Consumption Costs	\$3,762,561	\$2,641,379	\$1,121,182
Energy Demand Charges	\$0	\$0	\$0
Energy Utility Rebates	\$0	\$0	\$0
WaterCosts	\$0	\$0	\$0
Recurring and Non-Recurring OM&R Costs	\$0	\$115 , 200	-\$115 , 200
Capital Replacements	\$0	\$25 , 000	-\$25,000
Residual Value at End of Study Period	\$0	\$0	\$0
-			
Subtotal (for Future Cost Items)	\$3,762,561	\$2,781,578	\$980,982
-			
Total PV Life-Cycle Cost	\$3,762,561	\$3,287,258	\$475,302

Base Case

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$1,005,982

- Increased Total Investment \$530,680

Net Savings \$475,302

Savings-to-Investment Ratio (SIR)

SIR = 1.90

Adjusted Internal Rate of Return

AIRR = 5.73%

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year 10

Discounted Payback occurs in year 11

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle
Type Base Case Alternative Savings Savings

Electricity 793,030.0 kWh 556,720.0 kWh 236,310.0 kWh 4,725,553.0 kWh

Energy Savings Summary (in MBtu)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 2,705.9 MBtu 1,899.6 MBtu 806.3 MBtu 16,124.3 MBtu

Emissions Reduction Summary

Energy	Average	Annual	Emissions	Life-Cycle
Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg
Total:				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 4 PV Roof Only (With SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

June 1, 2024

Date of Study: Fri Oct 13 08:56:05 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Public Investment or Regulatory Analysis Analysis Purpose:

Analyst: Jeff Bagdasarian

Service Date: June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Discounting

Base Date:

End-of-Year Convention:

Comparison of Present-Value Costs PV Life-Cycle Cost

	Base Case	Alternative	Savings from Alternative
Initial Investment Costs:			
Capital Requirements as of Base Date	\$0	\$737 , 400	-\$737,400
Future Costs:			
Energy Consumption Costs	\$3,762,561	\$2,641,379	\$1,121,182
Energy Demand Charges	\$0	\$0	\$0
Energy Utility Rebates	\$0	-\$206,980	\$206,980
WaterCosts	\$0	\$0	\$0
Recurring and Non-Recurring OM&R Costs	\$0	\$115,200	-\$115,200
Capital Replacements	\$0	\$25,000	-\$25,000
Residual Value at End of Study Period	\$0	\$0	\$0
Subtotal (for Future Cost Items)	\$3,762,561	\$2,574,598	\$1,187,963
Total PV Life-Cycle Cost	\$3,762,561	\$3,311,998	\$450 , 563

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$1,212,963

- Increased Total Investment \$762,400

Savings-to-Investment Ratio (SIR)

SIR = 1.59

Net Savings

Adjusted Internal Rate of Return

AIRR = 4.81%

Payback Period

Estimated Years to Payback (from beginning of Service Period)

\$450,563

Simple Payback occurs in year 11

Discounted Payback occurs in year 13

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle
Type Base Case Alternative Savings Savings

Electricity 793,030.0 kWh 556,720.0 kWh 236,310.0 kWh 4,725,553.0 kWh

Energy Savings Summary (in MBtu)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings

Electricity 2,705.9 MBtu 1,899.6 MBtu 806.3 MBtu 16,124.3 MBtu

Emissions Reduction Summary

Energy	Average	Annual	Emissions	Life-Cycle
Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg
Total:				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg

Consistent with Federal Life Cycle Cost Methodology in OMB Circular A-94

Base Case: Baseline - No PV option 3

Alternative: Option 4T PV Roof Only Tax (With SMART)

General Information

T:\Dore & Whittier - 894\117 Consentino MS\PV Study\Contentio PV Study File Name: BLCC5.xml

Date of Study: Fri Oct 13 08:58:58 EDT 2023

Project Name: Contentino Middle School

Project Location: Massachusetts

Analysis Type: OMB Analysis, Non-Energy Project

Public Investment or Regulatory Analysis Analysis Purpose:

Analyst: Jeff Bagdasarian

Service Date: June 1, 2024

June 1, 2024

Study Period: 20 years 0 months (June 1, 2024 through May 31, 2044)

Discount Rate:

Discounting

Base Date:

End-of-Year Convention:

Altamastica Carrinana fuena Altamastica

Comparison of Present-Value Costs PV Life-Cycle Cost

	Base Case	Alternative	Savings from Alternative	
Initial Investment Costs:				
Capital Requirements as of Base Date	\$0	\$520 , 680	-\$520 , 680	
Future Costs:				
Energy Consumption Costs	\$3,762,561	\$2,641,379	\$1,121,182	
Energy Demand Charges	\$0	\$0	\$0	
Energy Utility Rebates	\$0	-\$206,980	\$206,980	
WaterCosts	\$0	\$0	\$0	
Recurring and Non-Recurring OM&R Costs	\$0	\$115 , 200	-\$115,200	
Capital Replacements	\$0	\$25 , 000	-\$25,000	
Residual Value at End of Study Period	\$0	\$0	\$0	
Subtotal (for Future Cost Items)	\$3,762,561	\$2,574,598	\$1,187,963	
Total PV Life-Cycle Cost	\$3,762,561	\$3,095,278	\$667 , 283	
		_		

Net Savings from Alternative Compared with Base Case

PV of Non-Investment Savings \$1,212,963

- Increased Total Investment \$545,680

Net Savings \$667,283

Savings-to-Investment Ratio (SIR)

SIR = 2.22

Adjusted Internal Rate of Return

AIRR = 6.57%

Payback Period

Estimated Years to Payback (from beginning of Service Period)

Simple Payback occurs in year 9

Discounted Payback occurs in year 9

Energy Savings Summary

Energy Savings Summary (in stated units)

Energy -----Average Annual Consumption----- Life-Cycle

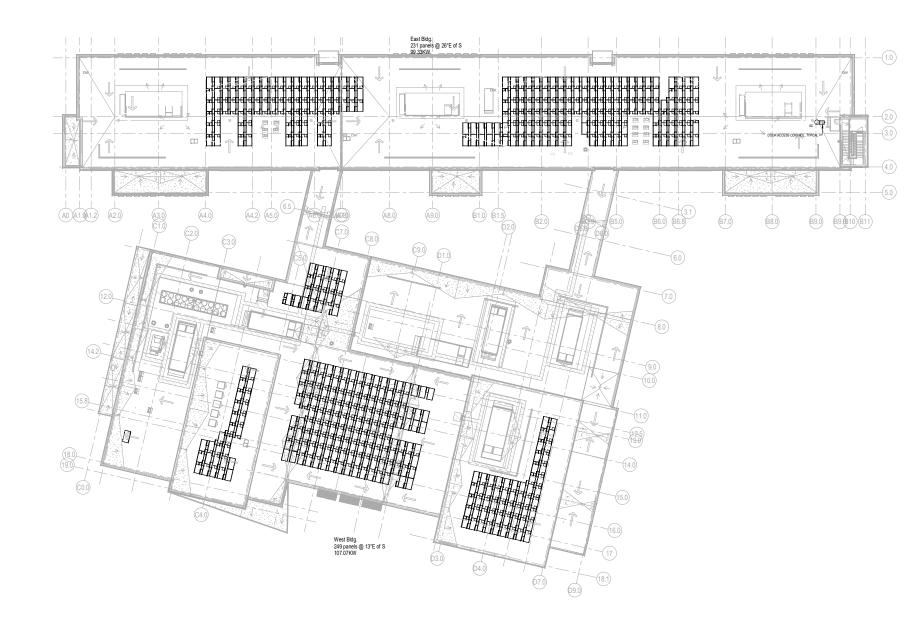
Type Base Case Alternative Savings Savings

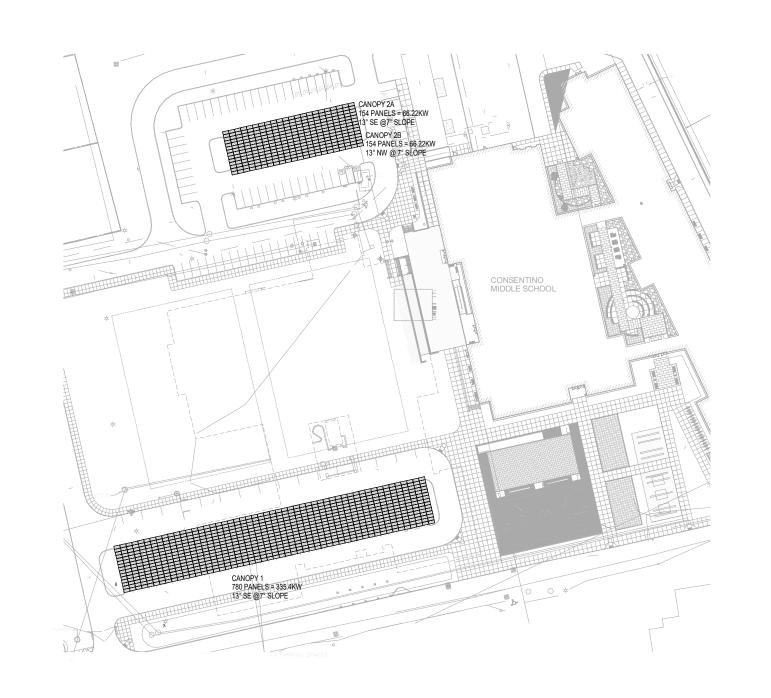
Electricity 793,030.0 kWh 556,720.0 kWh 236,310.0 kWh 4,725,553.0 kWh

Energy Savings Summary (in MBtu)

Energy -----Average Annual Consumption----- Life-Cycle

Type Base Case Alternative Savings Savings


Electricity 2,705.9 MBtu 1,899.6 MBtu 806.3 MBtu 16,124.3 MBtu


Emissions Reduction Summary

Energy	Average	Annual	Emissions	Life-Cycle
Туре	Base Case	Alternative	Reduction	Reduction
Electricity				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg
Total:				
CO2	261,756.67 kg	183,757.45 kg	77,999.22 kg	1,559,770.77 kg
SO2	74.24 kg	52.12 kg	22.12 kg	442.37 kg
NOx	199.87 kg	140.31 kg	59.56 kg	1,191.00 kg

Photovoltaic Array System Study	7
Constentino Middle School	

Appendix B

Photovoltaic Array System Study
Constentino Middle School

Appendix C

Caution: Photovoltaic system performance predictions calculated by PVWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts[®] inputs. For example, PV modules with better performance are not differentiated within PVWatts[®] from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at I/sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ("Model") is provided by the National Renewable Energy Laboratory ("INEL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE TO INDEMNIFY
DOE/NREL/ALLIANCE, AND ITS AFFILIATES,
OFFICERS, AGENTS, AND EMPLOYEES
AGAINST ANY CLAIM OR DEMAND,
INCLUDING REASONABLE ATTORNEYS'
FEES, RELATED TO YOUR USE, RELIANCE,
OR ADOPTION OF THE MODEL FOR ANY
PURPOSE WHATSOEVER, THE MODEL IS
PROVIDED BY DOE/NREL/ALLIANCE 'AS IS'
AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL
DOE/NREL/ALLIANCE BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER,
INCLUDING BUT NOT LIMITED TO CLAIM
ASSOCIATED WITH THE LOSS OF DATA OR
PROFITS, WHICH MAY RESULT FROM ANY
ACTION IN CONTRACT, INGLIGENCE OR
OTHER TORTIOUS CLAIM THAT ARISES OUT
OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

381,745 kWh/Year*

System output may range from 366,399 to 395,641 kWh per year near this location

Month	Solar Radiation (kWh / m ² / day)	AC Energy (kWh)
January	2.00	17,457
February	2.33	18,290
March	3.99	33,454
April	5.30	40,958
Мау	5.80	45,240
June	5.91	43,496
July	6.17	46,409
August	5.68	42,907
September	4.68	35,038
October	3.29	26,335
November	2.11	17,050
December	1.78	15,112
Annual	4.09	381,746
ocation and Station Identificat	ion	
Requested Location	685 WASHINGTON STRE	ET, HAVERHILL, MA
Veather Data Source	Lat, Lng: 42.77, -71.1	0.1 mi
atitude	42.77° N	
.ongitude	71.10° W	
V System Specifications		
OC System Size	335.4 kW	
Module Type	Standard	
Array Type	Fixed (open rack)	
System Losses	14.08%	
Array Tilt	7°	
Array Azimuth	167°	
OC to AC Size Ratio	1.25	
nverter Efficiency	96%	
Ground Coverage Ratio	0.4	
Albedo	From weather file	
Bifacial	No (0)	
	Jan Feb Mar	Apr May June
Monthly Irradiance Loss	16.4% 32.4% 6.8%	0% 0% 0%
	July Aug Sept	Oct Nov Dec

0%

0%

0%

0%

6%

12.8%

10/5/23, 10:33 AM PVWatts Calculator

Performance Metrics	
DC Capacity Factor	13.0%

Caution: Photovoltaic system performance predictions calculated by PVWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts® inputs. For example, PV modules with better performance are not differentiated within PVWatts® from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at //sam.nrel.gov) that allow for more precise and complex modeling of PV

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The $\mathsf{PVWatts}^{\circledR}$ Model ("Model") Disclaimer: Ine PVWatts® Model ("Moder") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE TO INDEMNIFY DOE/NREL/ALLIANCE, AND ITS AFFILIATES,
OFFICERS, AGENTS, AND EMPLOYEES
AGAINST ANY CLAIM OR DEMAND,
INCLUDING REASONABLE ATTORNEYS' REASONABLE ATTORNETS
FEES, RELATED TO YOUR USE, RELIANCE,
OR ADOPTION OF THE MODEL FOR ANY
PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS'
AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL
DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

75,371 kWh/Year*

Month	Solar Radiation (kWh/m²/day)	AC Energy (kWh)		
January	2.00	3,447		
February	2.33	3,611		
March	3.99	6,605		
April	5.30	8,087		
Мау	5.80	8,932		
June	5.91	8,588		
July	6.17	9,163		
August	5.68	8,471		
September	4.68	6,918		
October	3.29	5,200		
November	2.11	3,366		
December	1.78	2,984		
nnual	4.09	75,372		
ocation and Station Identificati	on			
equested Location	685 WASHINGTON STRE	ET, HAVERHILL, MA		
/eather Data Source	Lat, Lng: 42.77, -71.1 0.1 mi			
atitude	42.77° N			
ongitude	71.10° W			
V System Specifications				
DC System Size	66.22 kW			
lodule Type	Standard			
array Type	Fixed (open rack)			
System Losses	14.08%			
rray Tilt	7°			
Array Azimuth	167°			
OC to AC Size Ratio	1.25			
nverter Efficiency	96%			
round Coverage Ratio	0.4			
Ibedo	From weather file			
Bifacial	No (0)			
		Apr May June 0% 0% 0%		
Monthly Irradiance Loss		Oct Nov Dec		
		00/ 00/ 1===:		

0%

0%

0%

0%

6%

12.8%

10/5/23, 10:36 AM PVWatts Calculator

Performance Metrics	
DC Capacity Factor	13.0%

Caution: Photovoltaic system performance predictions calculated by PVWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts[®] inputs. For example, PV modules with better performance are not differentiated within PVWatts $^{(\!R\!)}$ from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at //sam.nrel.gov) that allow for more precise and complex modeling of PV

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The $PVWatts^{\textcircled{R}}$ Model ("Model") Disclaimer: Ine PVWatts® Model ("Moder") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE TO INDEMNIFY DOE/NREL/ALLIANCE, AND ITS AFFILIATES,
OFFICERS, AGENTS, AND EMPLOYEES
AGAINST ANY CLAIM OR DEMAND,
INCLUDING REASONABLE ATTORNEYS' REASONABLE ATTORNETS
FEES, RELATED TO YOUR USE, RELIANCE,
OR ADOPTION OF THE MODEL FOR ANY
PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS'
AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL
DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

65,415 kWh/Year*

Month	Solar Radiation (kWh/m²/day)	AC Energy (kWh)		
January	1.34	2,112		
February	1.74	2,594		
March	3.32	5,492		
April	4.80	7,386		
May	5.56	8,631		
June	5.76	8,447		
July	5.96	8,926		
August	5.26	7,914		
September	4.05	6,012		
October	2.57	4,009		
November	1.47	2,195		
December	1.12	1,695		
nnual	3.58	65,413		
ocation and Station Identificat	tion			
Requested Location	685 WASHINGTON STREET, HAVERHILL, MA			
leather Data Source	Lat, Lng: 42.77, -71.1 0.1 mi			
atitude	42.77° N			
ongitude	71.10° W			
V System Specifications				
C System Size	66.22 kW			
odule Type	Standard			
array Type	Fixed (open rack)			
ystem Losses	14.08%			
rray Tilt	7°			
array Azimuth	347°			
C to AC Size Ratio	1.25			
nverter Efficiency	96%			
Fround Coverage Ratio	0.4			
Ibedo	From weather file			
Bifacial	No (0)			
	Jan Feb Mar 16.4% 32.4% 6.8%	. ,		
Monthly Irradiance Loss		Oct Nov Dec		
	00/ 00/ 00/	00/ 60/ 42.00/		

0%

0%

6%

12.8%

10/5/23, 10:37 AM PVWatts Calculator

Performance Metrics	
DC Capacity Factor	11.3%

Caution: Photovoltaic system performance predictions calculated by PVWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts[®] inputs. For example, PV modules with better performance are not differentiated within PVWatts[®] from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at I/sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE TO INDEMNIFY
DOE/NREL/ALLIANCE, AND ITS AFFILIATES,
OFFICERS, AGENTS, AND EMPLOYEES
AGAINST ANY CLAIM OR DEMAND,
INCLUDING REASONABLE ATTORNEYS'
FEES, RELATED TO YOUR USE, RELIANCE,
OR ADOPTION OF THE MODEL FOR ANY
PURPOSE WHATSOEVER, THE MODEL IS
PROVIDED BY DOE/NREL/ALLIANCE 'AS IS'
AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL
DOE/NREL/ALLIANCE BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER,
INCLUDING BUT NOT LIMITED TO CLAIM
ASSOCIATED WITH THE LOSS OF DATA OR
PROFITS, WHICH MAY RESULT FROM ANY
ACTION IN CONTRACT, INGLIGENCE OR
OTHER TORTIOUS CLAIM THAT ARISES OUT
OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

113,340 kWh/Year*

System output may range from 108,784 to 117,466 kWh per year near this location.

Month	Solar Radia (kWh / m ² / da				,	AC Energy (kWh)
1		ay)				
January – .	2.11					5,421
February	2.42					5,600
March	4.08					10,016
April	5.37					12,080
May	5.82					13,198
June	5.92					12,670
July	6.18					13,508
August	5.73					12,570
September	4.74					10,344
October	3.40					7,966
November	2.20					5,242
December	1.88					4,723
Annual	4.15					113,338
ocation and Station Identificati	ion					
Requested Location	685 WASI	HINGTO	N STRI	EET, H	AVERH	IILL, MA
Veather Data Source	Lat, Lng:	42.77, -	71.1	0.1 m	i	
_atitude	42.77° N					
_ongitude	71.10° W					
V System Specifications						
OC System Size	99.33 kW					
Module Type	Standard					
Array Type	Fixed (roof mount)					
System Losses	14.08%					
Array Tilt	10°					
Array Azimuth	154°					
OC to AC Size Ratio	1.25					
nverter Efficiency	96%					
Ground Coverage Ratio	0.4					
Albedo	From wea	ther file	е			
Bifacial	No (0)					
	Jan	Feb	Mar	Apr	May	June
Monthly Irradiance Loss	16.4%	32.4%	6.8%	0%	0%	0%
nonany irradianos Loss	July	Aug	Sept	Oct	Nov	Dec

0%

0%

0%

0%

6%

12.8%

10/4/23, 6:21 PM PVWatts Calculator

Performance Metrics	
DC Capacity Factor	13.0%

Caution: Photovoltaic system performance predictions calculated by PVWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts® inputs. For example, PV modules with better performance are not differentiated within PVWatts® from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at //sam.nrel.gov) that allow for more precise and complex modeling of PV

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The $PVWatts^{\textcircled{R}}$ Model ("Model") Disclaimer: Ine PVWatts® Model ("Moder") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE TO INDEMNIFY DOE/NREL/ALLIANCE, AND ITS AFFILIATES,
OFFICERS, AGENTS, AND EMPLOYEES
AGAINST ANY CLAIM OR DEMAND,
INCLUDING REASONABLE ATTORNEYS' REASONABLE ATTORNETS
FEES, RELATED TO YOUR USE, RELIANCE,
OR ADOPTION OF THE MODEL FOR ANY
PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS'
AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL
DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

122,970 kWh/Year*

Month	Solar Radiation (kWh / m ² / day)	AC Energy (kWh)		
January	2.15	5,957		
February	2.45	6,122		
March	4.12	10,882		
April	5.39	13,044		
May	5.83	14,260		
June	5.92	13,649		
July	6.20	14,585		
August	5.75	13,594		
September	4.79	11,261		
October	3.43	8,661		
November	2.24	5,752		
December	1.92	5,202		
nnual	4.18	122,969		
ocation and Station Identificati	on			
Requested Location	685 WASHINGTON STRE	ET, HAVERHILL, MA		
Veather Data Source	Lat, Lng: 42.77, -71.1 0.1 mi			
atitude	42.77° N			
ongitude	71.10° W			
V System Specifications				
DC System Size	107.07 kW			
Module Type	Standard			
Array Type	Fixed (roof mount)			
System Losses	14.08%			
Array Tilt	10°			
Array Azimuth	167°			
OC to AC Size Ratio	1.25			
nverter Efficiency	96%			
Ground Coverage Ratio	0.4			
Albedo	From weather file			
Bifacial	No (0)			
	Jan Feb Mar 16.4% 32.4% 6.8%	Apr May June 0% 0% 0%		
Monthly Irradiance Loss	July Aug Sept			
	out, Aug Gept			

0%

0%

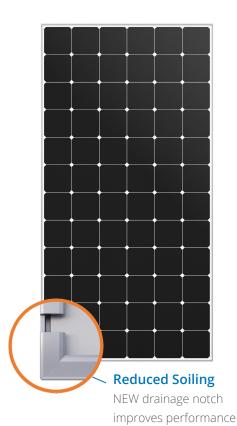
0%

0%

6%

12.8%

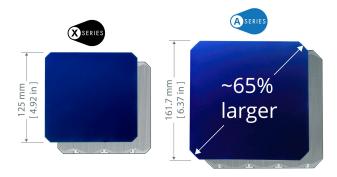
10/4/23, 6:23 PM PVWatts Calculator


Performance Metrics	
DC Capacity Factor	13.1%

Photovoltaic Array System Study	7
Constentino Middle School	

Appendix D

430–450 W Commercial A-Series Panels


SunPower® Maxeon® Technology

SunPower® Maxeon® cell-based panels maximize energy production and savings by combining industry-leading power, efficiency, and durability with the best power, product, and service warranty in the industry.^{1,2}

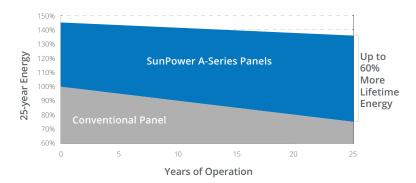
Highest Power Density Available

SunPower's new Maxeon® Gen 5 cell is 65% larger than prior generations, delivering the most powerful cell and highest efficiency panel in commercial solar. The result is more power per square meter than any commercially available solar.¹

SUNPOWER MAXEON SOLAR CELL TECHNOLOGY

Fundamentally Different. And Better.

- Most efficient cell in commercial solar²
- Delivers unmatched reliability³
- Patented solid metal foundation prevents breakage and corrosion


As sustainable as the energy it produces.

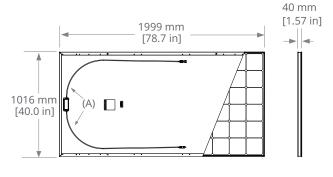
- Achieved the #1 ranking on the Silicon Valley Toxics Coalition's Solar Scorecard for 3 years running
- SunPower modules can contribute to your business's LEED certification⁴

Maximum Lifetime Energy and Savings

Designed to deliver up to 60% more energy from the same space over the first 25 years in real-world conditions like partial shade and high temperatures.¹

Best Reliability, Best Warranty

SunPower technology is proven to last and we stand behind our panels with the industry's best 25-year Combined Power, Product and Service Warranty.



430-450 W Commercial A-Series Panels

	Electrical Da	ata		
	SPR-A430-COM	SPR-A440-COM	SPR-A450-COM	
Nominal Power (Pnom) ⁵	430 W	440 W	450 W	
Power Tolerance	+5/0%	+5/0%	+5/0%	
Panel Efficiency	21.2%	21.7%	22.2%	
Rated Voltage (Vmpp)	42.7 V	43.4 V	44.0 V	
Rated Current (Impp)	10.1 A	10.2 A	10.2 A	
Open-Circuit Voltage (Voc)	51.2 V	51.6 V	51.9 V	
Short-Circuit Current (Isc)	10.9 A	10.9 A	11.0 A	
Max. System Voltage		1500 V UL		
Maximum Series Fuse		20 A		
Power Temp Coef.	- 0.29% / ° C			
Voltage Temp Coef.	−136 mV / ° C			
Current Temp Coef.		5.7 mA / ° C		

Operating Condition And Mechanical Data			
Temperature	-40° F to +185° F (-40° C to +85° C)		
Impact Resistance	1 inch (25 mm) diameter hail at 52 mph (23 m/s)		
Appearance	Class A		
Solar Cells	72 Monocrystalline IBC cells		
Tempered Glass	High-transmission tempered anti-reflective		
Junction Box	IP-68, TE (PV4S)		
Weight	47.7 lbs (21.6 kg)		
Max. Load	Wind: 75 psf, 3500 Pa, 357 kg/m² front & back Snow: 125 psf, 6000 Pa, 612 kg/m² front		
Frame	Class 2 silver anodized		

Tests And Certifications			
Standard Tests	UL1703		
Quality Management Certs	ISO 9001:2015, ISO 14001:2015		
EHS Compliance	OHSAS 18001:2007, lead free, Recycle Scheme		
Ammonia Test	IEC 62716 (Pending)		
Desert Test	MIL-STD-810G (Pending)		
Salt Spray Test	IEC 61701 (maximum severity) (Pending)		
PID Test	1500 V: IEC 62804		
Available Listings	UL, CEC		

FRAME PROFILE

(A) Cable Length: 1320 mm +/-10 mm [52 in +/-0.4 in] (B) Long Side: 32 mm [1.3 in] Short Side: 24 mm [0.9 in]

Please read the safety and installation guide.

- 1 SunPower 450 W, 22.2% efficient, compared to a Conventional Panel on same-sized arrays (310 W, 16% efficient, approx. 2.0 m²), 4.9% more energy per watt (based on PVSyst pan files for avg US climate), 0.5%/yr slower degradation rate (Jordan, et. al. "Robust PV Degradation Methodology and Application." PVSC 2018).
- $2\,$ Based on search of datasheet values from websites of top 20 manufacturers per IHS, as of January 2019.
- 3 #1 rank in "Fraunhofer PV Durability Initiative for Solar Modules: Part 3". PVTech Power Magazine, 2015. Campeau, Z. et al. "SunPower Module Degradation Rate," SunPower white paper, 2013.
- 4 A-Series panels additionally contribute to LEED Materials and Resources credit categories. 5 Standard Test Conditions (1000 W/m² irradiance, AM 1.5, 25° C). NREL calibration Standard: SOMS current, LACCS FF and Voltage.

See www.sunpower.com/company for more reference information. For more details, see extended datasheet: www.sunpower.com/solar-resources. Specifications included in this datasheet are subject to change without notice.

©2019 SunPower Corporation. All rights reserved. SUNPOWER, the SUNPOWER logo, and MAXEON are registered trademarks of SunPower Corporation in the U.S. and other countries as well.

1-800-SUNPOWER

532726 Rev C / LTR US