Haverhill High School

Probability \& Statistics Curriculum Map

2006-2007
Grades 10, 11, 12

Curriculum Committee Members
Patricia Giampa
Bethe McBride

Probability and Statistics

General Outline:

$\begin{gathered} \text { Term } \\ 1 \end{gathered}$	Topic(s)	Chapters (Text*)
	Exploratory Analysis	1 A Case Study
	\& Descriptive Statistics	2 Exploring Distributions
		3 Relationships Between Two Quantitative Variables
	Planning \& Conducting a Study	4 Sample Surveys and Experiments
2	Probability	10 Sampling Distributions (YMS)
		5 Sampling Distributions
		6 Probability Models
		7 Probability Distributions
3	Statistical Inference	13 Confidence Intervals: the Basics (YMS)
		14 Tests of Significance: the Basics (YMS)
		8 Inference for Proportions
		9 Inference for Means
		10 Inference for Regression
4	Statistical Inference	11 Chi-Square Tests
	Review \& Final Exam	
	Final Project	12 Case Studies

*Textbooks:

Watkins, Scheaffer \& Cobb, Statistics in Action (WSC). Used unless specified otherwise.
Yates, Moore \& Starnes, Basic Practice of Statistics (YMS)
Saunders, Statistic and Probability in Modern Life

Additional Resources:

Technology: TI 83 Graphing Calculators; Minitab Statisitcsl Software
Videos: "Against All Odds," "Breaking Vegas," "DTD Series"
Reading "Statistics, A Guide to the Unknown", 4th ed. (or editions 2-4)
"Bringing Down the House" "How to Lie with Statistics"

Instructional Activities

Direct Instruction
Cooperative Learning
Class Exercises / Activities
Real Life Applications
Homework Exercises
Study Guides / Chapter Reviews
Spiral Activities
Technology Integration
Portfolios
Integrated Skills Project

Assessment

Multi-section Quiz
Chapter Test
Classwork Assessment
Homework Assessment
Graphing Calculator Assessment
Computer Lab Assessment
Portfolio Assessment
Project Assessment

TERM 1

Topic	Chapters and Topics	Timeline
Exploratory Analysis \& Descriptive Statistics	1 A Case Study - WESTVACO 2 Exploring Distributions - Graphical Displays of Distributions - Measures of Center \& Spread - The Normal Distribution 3 Relationships Between Two Quantitative Variables - Scatterplots - Lines of best fit \& least square regression - Correlation - Diagnostics \& Residuals	Week 1 Weeks 2-4 Weeks 5-7
Planning \& Conducting a Study	4 Sample Surveys and Experiments - Rationale \& methods for sampling - Randomization - Experiments and Inference about Cause - Designing Experiments to Reduce Variability	Weeks 8 - 9

Learning Standards:

- 12.D. 2 Select an appropriate graphical representation for a set of data and use appropriate statistics (e.g., quartile or percentile distribution) to communicate information about the data.
- 12.D. 5 Describe a set of frequency distribution data by spread (i.e., variance and standard deviation), skewness, symmetry, number of modes, or other characteristics. Use these concepts in everyday applications.
- 12.D. 4 Apply uniform, normal, and binomial distributions to the solutions of problems.
- 12.D. 3 Apply regression results and curve fitting to make predictions from data.
- 12.D. 1 Design surveys and apply random sampling techniques to avoid bias in the data collection.
- 12.D. 7 Compare the results of simulations (e.g., random number tables, random functions, and area models) with predicted probabilities.

AP Course Outline:

I. Exploring Data: Describing Patterns and departures from patterns (20\% - 30\%):
A. Constructing \& Interpreting Graphical Displays of Distributions of Univariate Data
B. Summarizing Distributions of Univariate Data
C. Comparing Distributions of Univariate Data.
D. Exploring Bivariate Data
E. Exploring Categorical Data.
II. Sampling and Experimentation: Planning \& Conducting a Study (10\%-15\%)
A. Overview of methods of data collection
B. Planning \& conducting surveys
C. Planning \& conducting experiments
D. Generalizability of results and types of conclusions from observational studies, experiments and surveys

Learning Standards:

- 12.D. 4 Apply uniform, normal, and binomial distributions to the solutions of problems.
- 12.D. 6 Use combinatorics (e.g., "fundamental counting principle," permutations, and combinations) to solve problems, in particular, to compute probabilities of compound events. Use technology as appropriate.
- 12.D. 7 Compare the results of simulations (e.g., random number tables, random functions, and area models) with predicted probabilities.

AP Course Outline:

III. Anticipating Patterns; Exploring random phenomena using probability and simulation (20\% 30\%)
A. Probability
B. Combining independent random variables
C. The normal distribution
D. Sampling distributions

TERM 3

Learning Standards:

- 12.D.4 Apply uniform, normal, and binomial distributions to the solutions of problems.

AP Course Outline:

IV. Statistical Inference: Estimating population parameters and testing hypotheses (30\% - 40\%)
A. Estimation (point estimators \& confidence intervals)

- Estimating population parameters and margins of error
- Properties of point estimators - unbiasedness and variability
- Logic, meaning and properties of confidence intervals and confidence level
- Large sample confidence interval for proportion and difference between two proportions
- confidence interval for a mean and difference between two means (unpaired and paired)
- confidence interval for the slope of a least square regression line
B. Tests of Significance
- Logic of significance testing, null and alternative hypotheses; p-values; one and two-sided tests; concept of type I and type II errors; concept of power
- Large sample test for a proportion and test for difference between two proportions
- Large sample test for a mean and test for difference between two means

TERM 4

Topic	Chapters	
Statistical Inference	11 Chi-Square Tests - Testing a Probability Model: Chi-Square Goodness of Fit Test - Chi-Square test of Homogeneity - Chi-Square Test of Independence 12 Inference for Regression - Variation in the estimated slope - Making inferences about slope - Transforming for a better fit	Weeks 27-28 Weeks 29-30
Review \& Final Exam	NA	Weeks 31-32
Final Project	NA	Weeks 33-36

Learning Standards:

- 12.D. 3 Apply regression results and curve fitting to make predictions from data.
- 12.D. 4 Apply uniform, normal, and binomial distributions to the solutions of problems.

AP Course Outline:

IV. Statistical Inference: Estimating population parameters and testing hypotheses (30\% - 40\%)
A. Estimation (point estimators \& confidence intervals)

- confidence interval for the slope of a least square regression line
B. Tests of Significance
- Chi-square test for goodness of fit, homogeneity of proportions and independence (oneand two-way tables)
- Test for slope of least square regression line

