Haverhill High School

AP StatisticsCurriculum Map

Grades 12

AP Statistics

General Outline:

Term 1	Topic(s) Exploratory Analysis & Descriptive Statistics Planning & Conducting a Study	 Chapters* 1 A Case Study 2 Exploring Distributions 6 Two-Way Tables (Moore) 3 Relationships Between Two Quantitative Variables 4 Sample Surveys and Experiments
2	Probability	 5 Introducing Probability (Moore) 6 Probability Models 7 Probability Distributions 10 Sampling Distributions (Moore)
3	Statistical Inference	 13 Confidence Intervals: the Basics (Moore) 14 Tests of Significance: the Basics (Moore) 9 Inference for Means 8 Inference for Proportions
4	Statistical Inference	10 Chi-Square Tests11 Inference for Regression
	Review & AP Exam Final Projects	12 Case Studies

Primary Textbook:

• Watkins, Scheaffer & Cobb, Statistics in Action Key Curriculum Press, 2004

Supplementary Textbook:

• Moore, David S. *The Basic Practice of Statistics*, W.H. Freeman & Co. 2004, 3rd ed. (Moore)

Technology:

- TI-83 and TI-84 Graphing Calculators
- MiniTab 15 Statistical Software, Minitab Inc., Addison-Wesley Publishing co.

Additional Resources:

- Rossman, Chance & Barr Von Oehsen, *Workshop Statistics, Discovery with Data and the Graphing Calculator*, Key College Publishing, 2002, 2nd ed
- Against All Odds, The Annenberg/CPB Collection, 1989 (Video Series)
- Breaking Vegas, The History Channel (Video Documentary)
- Peck, Roxy, Statistics, A Guide to the Unknown, Thompson, 2006, 4th ed.;
- Gonick, Larry & Smith, Woollcott, The Cartoon Guide to Statistics, Collins Reference, 1993
- Huff, Darrell, How to Lie with Statistics, W.W. Norton & Company, 1993

Instructional Activities

Direct Instruction

Class Exercises / Activities

Cooperative Learning

Homework Exercises

Study Guides / Chapter Reviews

Spiral Activities

Technology Integration

Integrated Skills Projects

Released AP Free Response

Independent Reading

Assessment

Quizzes

Chapter Tests

Class work

Homework

Graphing Calculator Activities

Computer Lab / MiniTab Activities

Project Assessment

Self Assessment & Peer Reviews

Free Response Rubric

Topic	Chapters and Topics	Timeline
Exploratory Analysis & Descriptive Statistics	1 A Case Study - WESTVACO	Week 1
	2 Exploring Distributions	Weeks 2 - 4
	Graphical Displays of Distributions	
	 Measures of Center & Spread 	
	 The Normal Distribution 	
	6 Two-Way Tables (Moore)	
	 3 Relationships Between Two Quantitative Variables Scatterplots Lines of Best Fit & Least Square Regression 	Weeks 5 - 7
	 Correlation 	
	Diagnostics & Residuals	
Planning &	4 Sample Surveys and Experiments	Weeks 8 – 9
Conducting	 Rationale & Methods for Sampling 	
a Study	 Randomization 	
	Experiments and Inference About Cause	
	 Designing Experiments to Reduce Variability 	

Learning Standards:

- 12.D.2 Select an appropriate graphical representation for a set of data and use appropriate statistics (e.g., quartile or percentile distribution) to communicate information about the data.
- 12.D.5 Describe a set of frequency distribution data by spread (i.e., variance and standard deviation), skewness, symmetry, number of modes, or other characteristics. Use these concepts in everyday applications.
- 12.D.4 Apply uniform, normal, and binomial distributions to the solutions of problems.
- 12.D.3 Apply regression results and curve fitting to make predictions from data.
- 12.D.1 Design surveys and apply random sampling techniques to avoid bias in the data collection.
- 12.D.7 Compare the results of simulations (e.g., random number tables, random functions, and area models) with predicted probabilities.

AP Course Outline:

- I. Exploring Data: Describing Patterns and departures from patterns (20% 30%):
 - A. Constructing & Interpreting Graphical Displays of Distributions of Univariate Data
 - B. Summarizing Distributions of Univariate Data
 - C. Comparing Distributions of Univariate Data.
 - D. Exploring Bivariate Data
 - E. Exploring Categorical Data.
- II. Sampling and Experimentation: Planning & Conducting a Study (10% 15%)
 - A. Overview of methods of data collection
 - B. Planning & conducting surveys
 - C. Planning & conducting experiments
 - D. Generalizability of results and types of conclusions from observational studies, experiments and surveys

Topic	Chapters & Topics	
Probability	 9 YMS Introducing Probability • Idea of Probability • Randomness • Probability Models 6 Probability Models • Samples Spaces with Equally Likely Outcomes • Addition Rule & Disjoint Events • Conditional Probability • Independent Events 	Weeks 10 - 12
	 7 Probability Distributions • Random Variables & Expected Value • Binomial Distribution • Geometric Distribution 	Weeks 13 – 15
	 10 Sampling Distributions (Moore) Parameters and Statistics Estimation & Law of Large Numbers Sampling Distributions Sampling Distribution of Sample Mean Central Limit Theorem Statistical Process Control 	Weeks 16 – 18

Learning Standards:

- 12.D.4 Apply uniform, normal, and binomial distributions to the solutions of problems.
- 12.D.6 Use combinatorics (e.g., "fundamental counting principle," permutations, and combinations) to solve problems, in particular, to compute probabilities of compound events. Use technology as appropriate.
- 12.D.7 Compare the results of simulations (e.g., random number tables, random functions, and area models) with predicted probabilities.

AP Course Outline:

- III. Anticipating Patterns; Exploring random phenomena using probability and simulation (20% 30%)
 - A. Probability
 - B. Combining independent random variables
 - C. The normal distribution
 - D. Sampling distributions

Topic	Chapters	
Statistical Inference	 13 YMS Confidence Intervals: The Basics Estimating with Confidence Confidence Intervals for the Population Mean How Confidence Intervals Behave Choosing the Sample Size 	Weeks 19 - 20
	 14 YMS Tests of Significance: The Basics Reasoning of Tests of Significance Stating Hypotheses Test statistics, P-values, Statistical Significance Tests of a Population Mean P-values and Significance Levels Tests from Confidence Intervals 	Weeks 21 - 22
	 9 Inference for Means Toward a Confidence Interval & Significance Test for Mean Estimating Sigma: The T-Distribution Effect of Long Tails and Outliers Inference for Difference Between Two Means Paired Comparison 	Weeks 23 – 24
	 8 Inference for Proportions Estimating a Proportion with Confidence Testing a Proportion Confidence Interval & Significance Test for Difference of Two Proportions 	Weeks 25 - 26

Learning Standards:

• 12.D.4 Apply uniform, normal, and binomial distributions to the solutions of problems.

- AP Course Outline:

 IV. Statistical Inference: Estimating population parameters and testing hypotheses (30% 40%)
 - A. Estimation (point estimators & confidence intervals)
 - B. Tests of Significance

Topic	Chapters	
Statistical Inference	 10 Chi-Square Tests Testing a Probability Model: Chi-Square Goodness of Fit Test Chi-Square Test of Homogeneity Chi-Square Test of Independence 11 Inference for Regression Variation in the Estimated Slope Making Inferences About Slope Transforming for a Better Fit 	Weeks 27 - 28 Weeks 29 - 30
Exam Review	NA	Weeks 31 - 32
Final Projects	12 <u>Case Studies</u>	Weeks 33 – 36

Learning Standards:

- 12.D.3 Apply regression results and curve fitting to make predictions from data.
- 12.D.4 Apply uniform, normal, and binomial distributions to the solutions of problems.

AP Course Outline:

- IV. Statistical Inference: Estimating population parameters and testing hypotheses (30% 40%)
 - A. Estimation (point estimators & confidence intervals)
 - B. Tests of Significance