
AP
®

Computer Science A
Syllabus
Overview of AP

®
Computer Science A

Computer Facilities
Our classroom is also our computer lab. We have our computers around the outside of the room,
with the center set up in a traditional classroom fashion, with daily availability of overhead
computer projection and screen, smart board capabilities, a white board and chalk board. Our lab
and the labs around the building are managed and maintained by a full-time technical support
staff. They save us countless hours and ensure that we are up and running 100 percent of the time.
This course is on a tight schedule; any downtime during lab is detrimental to student learning.
Classes are 43 minutes long 4 times per week and 65 minutes long once per week The computer
Lab is available after school, one 3 hour Saturday each term and 3 hour AP classes are required
for all students during state mandatory testing. Each student has a computer workstation. Students
have accounts on a networked server and store all of their class files in their accounts. All
students have access to all instructional material filed electronically.
Course Overview
The content of Computer Science A is a subset of the content of Computer Science AB.
Computer Science A is an introductory course emphasizing object-oriented programming
methodology with a concentration on problem solving and algorithm development and is meant
to be the equivalent of a first-semester college level course in Computer Science. It includes the
study of data-structures, design and abstraction. The emphasis is on design issues that make
programs understandable, adaptable and when appropriate reusable. At the same time, the
development of useful computer programs and classes is used as content for introducing
important concepts in computer science. In addition, an understanding of basic hardware and
software components of computer systems and the responsible use of these systems is are integral
parts of this course. Current offerings of the AP CS exam require the use of Java. Math and
computer pre-requisites are required for registration. The novice will start not by designing a
whole program but rather by studying programs already developed, then writing or modifying
parts of a program to add or change its functionality, continuing the study of objects primarily as
an instance of a class. A complete list of topics can be found on p. 7-11 at AP Central College
Board’s website.
http://apcentral.collegeboard.com/apc/public/repository/52435apcompscilocked_4315.pdf
Assessment
A variety of instructional techniques and strategies are employed with an emphasis on
cooperative class work assignments including investigative and exploratory activities.
A variety of assessment tools are used that emphasize an integrated approach to learning.
Students are expected to clearly demonstrate their methods, testing and analyses.
Quizzes, tests and homework and class work assignments include a combination of multiple
choice, short-answer, open response type questions, and projects in line with the concepts being
learned. Cumulative reviews follow each chapter and include released AP free response
questions. Self and peer-evaluations and comparisons using scoring rubrics will be used.

Individual and group exercises and projects are designed to learn, practice and review the
material learned to date and will be structured so that students integrate the key components of
the programming process according to the waterfall model of design. Throughout the year,
students will practice and gain proficiency in communicating verbally and in writing, journaling,
using flow charts, other structural design, writing and testing code.

 1June 2007

Texts
*Primary Textbook:

• Litvin, Maria and Litvin, Gary. Java Methods A & AB: Object Oriented
Programming and Data Structures. Skylight Publishing, 2006.
http://www.skylight.com

*Supplementary Textbook:

• Lambert/Osborne. Fundamentals of Java: AP Computer Science Essentials for the
A and AB Exams. Thomson Course Technology 2007.

http://www.course.com/catalog/product.cfm?category=Computer%20Science&subcat
egory=AP%20Computer%20Science&isbn=978-0-619-26723-0

Additional Resources:

 • The College Board’s GridWorld Case Study
 • AP Central

®
: Computer Science A Quick Reference Guide

• Bergin, J., et al. Karel J. Robot: A Gentle Introduction to the Art of Object-Oriented Programming
Using Java. Copyright Joseph Bergin.
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

• Bloch, J. and Gafter, N. Java Puzzlers by. Addison-Wesley, 2005.
• Bolker, E. and Campbell; Java Outside In
• Burnette, E. Eclipse IDE Pocket Guide. O’Reilly 2005
• Eckel, B Thinking in Java fourth edition; Prentice Hall 2006.
• Eubanks, B Wicked Cool Java. No Starch Press Inc. CA. 2005
• Guzdial, M. and Ericson, B. Introduction to Computing and Programming with Java: A

Multimedia Approach
• Horstmann, Cay. Big Java. New York: Wiley, 2002.

 Power Point presentation from Fundamentals and Cay Horstmann’s student companion website:
http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=2215&itemId=0471697044

• Barron’s AP review
• Litvin’s AP Review
• Raposa, R. Java 60 Minutes a Day. Wiley Publishing.2003
• Touretzky, D. Common Lisp, The Benjamin Cummings Publishing Company Inc. 1990; Ch 8 p.

231 (243-283 of PDF) http://www.cs.cmu.edu/~dst/LispBook/book.pdf
• Weiss, Mark Allen. Data Structures and Problem Solving Using Java, 2nd ed. New York:

Addison Wesley, 2002.
AP Computer Science

General Outline & Resources continued
Instructional Activities Assessment
Direct Instruction Quizzes
Class Exercises / Activities Chapter Tests
Cooperative Learning Class work
Homework Exercises Homework
Study Guides / Chapter Reviews Computer Lab exercises and projects
Spiral Activities Self Assessment & Peer Reviews
Technology Free Response Rubric
Integrated Skills Projects
Released AP Free Response
Independent Reading

 2June 2007

http://www.skylight.com/
http://www.course.com/catalog/product.cfm?category=Computer%20Science&subcategory=AP%20Computer%20Science&isbn=978-0-619-26723-0
http://www.course.com/catalog/product.cfm?category=Computer%20Science&subcategory=AP%20Computer%20Science&isbn=978-0-619-26723-0
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html
http://www.amazon.com/Introduction-Computing-Programming-Java-Multimedia/dp/0131496980/ref=pd_bbs_sr_1/102-7288001-3336163?ie=UTF8&s=books&qid=1179928242&sr=8-1
http://www.amazon.com/Introduction-Computing-Programming-Java-Multimedia/dp/0131496980/ref=pd_bbs_sr_1/102-7288001-3336163?ie=UTF8&s=books&qid=1179928242&sr=8-1
http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=2215&itemId=0471697044
http://www.cs.cmu.edu/~dst/LispBook/book.pdf

Syllabus at a Glance
Unit General Topic Case study Code/ Primary

Projects* (Methods)
3 Week
Sections

Chapters
(Fundamentals)

Background CS GridWorld Part 1 0–2 Ch 1 1
First Java Programs Karel J. Robot

Conversion examples
3-5 Ch 2- 3

Syntax, Errors and
Debugging

6-8 Ch 3- 4 2

Control Statements

‘First Steps- Methods ch 3,
‘Dance Studio’ Methods ch 11
Euclid’s GCF algorithm- Methods ch 4
Bank Code JOI
Histograms Open response 2000
‘Rolling Dice’ Methods ch 7

9–11 Ch 4- 5

Defining Classes 12–14 Ch 5, Ch 10 3
Control Statements
Continued
Recursion

GridWorld Part 2
‘Pie Chart’ Methods ch 6
Towers of Hanoi; Common Lisp ch 8

15-17 Ch 6, 7

Arrays and ArrayList GridWorld Part 3 18-20 Ch 9, Ch 11
Quadratic Sorts and
Linear/Binary Search

GridWorld Part 4 21-23 Ch 12
4

Mergesort Comparing Sort Algorithms
Fundamentals

24-26 Ch 12-13

 Review (from
Fundamentals)

12 Units 27-29 Ch 1-12

* Other selected exercises also included in weekly plan- Appendix 1

 3June 2007

C2—The course includes all of the topics
listed in the “Computer Science A”
column of the Topic Outline in the AP
Computer Science Course Description
C4—The course teaches students to use
and implement commonly used algorithms
and data structures.
C5—The course teaches students to
develop and select appropriate algorithms
and data structures to solve problems.
C9—The course teaches students to
recognize the ethical and social
implications of computer use.

1
Course Outline [C2]

Unit 1: Weeks 0
Summer reading list- one book of choice
Summer independent study with Alice, Karel and/or Robocode
Unit 1: Weeks 1-5
Introduction to the principal concepts in computer science using
Grid World Case Study Part 1 and Karel J Robot.
Objectives [C4] [C5]
 • Become familiar with the computer lab, accounts, and IDE ‘s
 • Understand object-oriented programming and top-down design/refinement of individual

tasks
 • Basic class structure including instance variables, local variables, parameter passing, scope,

public/private visibility, use of super
 • Sequence, selection, and iteration
 • Error categorization/correction
 • Part 1 of GridWorld Case Study
 • Creating projects and running the GridWorld Case Study
 • Black-box testing
 • Computer ethics and social implications
 • Arithmetic operators
Teaching Strategies
To teach computer science concepts so that students have immediate visual feedback—at least in
the beginning, while learning stepwise refinement. They can understand what they have done
right and wrong because they can see it. Students should not lose sight of computer science as
they examine the details of the computer language. This undertaking is not too difficult since
algorithms that solve a variety of robot tasks, and Gridworld are both plentiful and provocative,
as are the topics of study associated with them. I emphasize for creativity and imagination so that
students can experience the results of computer science at a first-hand level, while keeping in
mind the basic concepts.
A good place to begin talking about computer ethics is when we begin the case study. The
students will immediately notice that each source file contains a statement referring to GNU
licensing. From there I introduce them to both the ACM and IEEE and their published Codes of
Ethics. Dr. Jody Paul has an excellent site listing many links that will help to facilitate thought
and discussion among teachers and students. [C9]
References/Readings
Karel J. Robot and many other related ideas at the author’s site.
Java Fundamentals A & AB, selected readings from Chapters 1-3.
Sample daily schedule includes PowerPoint presentations, labs, homework un-plugged, and
review exercises; Introduction of API and Sun’s tutorials.
Assignments/Labs
 • See the weekly schedule, which includes homework assignments, labs, review exercises,

PowerPoint presentations, and worksheets, quizzes and tests.
 Programs and activities: Binary card activity; Hello World, Hello World cup of java, Hello

World with date; Gridworld Part 1; Karel J Robot; Temperature Conversion and
modifications (kilometers to nautical miles, minutes in a year, momentum output); Income
tax calculator; Drawing Shapes.

 4June 2007

2
Unit 2: Weeks 6–11
 Conversion examples; Selected Case Studies
Objectives [C3] [C7]
 Source, bytecode, compilers, interpreters, Java virtual machine,

Platform independence
 Computer software and hardware components, operating systems
 Basic logic gates and computer numbering systems
 Assignment statement, primitive data types
 Arithmetic operators cont., ArithmeticException, precedence,

Casting/promotion
 Interfaces
 java.lang.Math (abs, pow, sqrt, random), static methods

Teaching Strategies
Classroom discussions on topics of processors, peripherals, and system so
throughout the course. Students discuss and identify major components an
while gaining familiarity with the operations of the hardware and software
and ability to distinguish between a single-user system and a network. It is
students will adhere to the Acceptable Users’ Policy given by our district a
freshman contract.
Interfaces are introduced by providing one for students and having them w
that implement the interface. In this manner, I am giving their lab/class its
providing a lab specification, especially if it contains Javadoc. It’s also a w
their labs, guaranteeing that the students' classes all have the same method
easily test all of their methods.
I require that the labs be fault-tolerant, that is, handle incorrect data entere
them additional practice with selection, iteration, and string and primitive
conversions.

References/Readings
Jamtester, JUnit, and unit testing www.jamtester.com
Java Fundamentals A & AB, selected readings from Chapters 3-5

Assignments/Labs
 Java Methods A and AB, selected exercises and labs from chapters 1, 3
 Fundamentals selected exercises and labs from chapters 1 -5

Programs and activities: First Steps and Dance Studio (Methods); Emplo
calculator; Mulle-Lyer illusion; Folly of Gambling; Euclid’s GCF algorith
Population study; bases program; Rolling dice; Mode and Histogram Lab.

 June 2007
C3—The course teaches students to
design and implement computer-
based solutions to problems in a
variety of application areas.
C7—The course teaches students to
read and understand a large program
consisting of several classes and
interacting objects, and enables
students to read and understand the
current AP Computer Science Case
Study posted on AP Central

®
.
ftware are ongoing
d how they interact,
 available in our school
 expected that all
nd signed as a

rite a couple of classes
 basic structure,
ay to automate testing

 signatures, enabling to

d by the user, so I give
comparisons and

, 4, 7 and 11

yee total weekly pay
m; Bank code JOI;

5

C6 - The course teaches students
to code fluently in an object-
oriented paradigm using the
programming language Java. The
course teaches students to use
standard Java library classes from
the AP Java subset delineated in
Appendices A and B of the AP
Computer Science Course
Description. (Note: Students who
study a language other than Java
in AP Computer Science must
also be taught to use Java, as
specified in the AP Java subset.)

C8—The course teaches students
to identify the major hardware and
software components of a
computer system, their
relationship to one another, and
the roles of these components
within the system.

3
Unit 3: Weeks 12-17
Grid World Part 2, Towers of Hanoi, Selected Case Studies
Objectives [C6] [C8]
 • Intercommunicating objects
 • Data structure design and selection
 • Feeling comfortable with the Case Study
 • Parameter passing terminology and concepts
 • String class, object references, aliasing
 • Selection in more detail
 • Object is the superclass of all superclasses, overriding toString()
 • Recursion
 • Inheritance and polymorphism, overriding methods
 • java.lang.Math.random(), RandNumGenerator
 • Analyze, design, code, and test software

Teaching Strategies
The GridWorld Case Study can be sliced into byte-sized pieces by incorporating some of the
classes as early as possible in the course. I have the students comfortable with the case study
making changes and using it in investigations of concepts as students gain comfort using libraries
and objects and writing and designing object-oriented code. As they are mastering these tasks,
they are also mastering important AP concepts. Recursion is introduced at a conceptual then a
working level.

References/Readings
Java Fundamentals A & AB, selected readings from Chapters 5-8, 10.
Dr. Jody Paul www.jodypaul.com/SWE/ethics.html ; Ch 8 Common Lisp

Assignments/Labs
 Towers of Hanoi Activities
 Exercise sets in Part 2 of the GridWorld Case Study
 Java Methods A and AB, selected exercises and labs from chapter 6.
 Mode and Histogram lab (based on 2000 AP exam question)
 Fundamentals selected exercises and labs from chapters 5-8

Programs and Activities: GridWorld Part 2; Student Class and Shape extensions; Weekly pay
extension; Truth tables; Tax tables; Pie Chart (Methods); Fibonacci numbers; Circle animations;
Common Lisp reading; Perfect numbers (Methods ch 8); Towers of Hanoi; Thermometer Class
extension.

 6June 2007

C3—The course teaches
students to design and
implement computer-based
solutions to problems in a
variety of application areas.
C4—The course teaches
students to use and implement
commonly used algorithms and
data structures.
C5—The course teaches
students to develop and select
appropriate algorithms and data
structures to solve problems.
C6 - The course teaches
students to code fluently in an
object-oriented paradigm using
the programming language
Java. The course teaches
students to use standard Java
library classes from the AP
Java subset delineated in
Appendices A and B of the AP
Computer Science Course
Description. (Note: Students
who study a language other
than Java in AP Computer
Science must also be taught to
use Java, as specified in the AP
Java subset.)
C7—The course teaches
students to read and understand
a large program consisting of
several classes and interacting
objects, and enables students to
read and understand the current
AP Computer Science Case
Study posted on AP Central

®
.

4
Unit 4 Section 1: Weeks 18-20
Arrays and Array Lists; Grid World Part 3 and 4
Objectives [C3] [C4] [C5] [C6] [C7]
 • Declaring, constructing, initializing, and indexing arrays/ArrayList
 • Storing primitives and objects in arrays/ArrayList
 • Traversing, inserting, deleting array/ArrayList elements
 • Passing arrays/ArrayList to methods
 • Wrapper classes—Double, Integer
 • Casting, ClassCastException, ArrayIndexOutOfBoundsException
 • Java 5.0's Generics
 • Java 5.0's enhanced for loop
 • Inheritance and polymorphism
 • Data structure/algorithm selection and design
 • Interfaces (Comparable, Locatable) and Abstract
 classes
Teaching Strategies
Students get an informal look at arrays working with parts 2 and 3 of
the GridWorld Case Study. Now we go into it in depth. The first few
labs in this section are small and focused, used for practicing simple
array traversals, insertions, and deletions. I keep it simple at this point
and not embed array concepts within too many object-oriented concepts.
Afterward, I then introduce them to some object-oriented GUI labs to give
them even more practice with arrays and ArrayLists.

By this point in the year, students have a working knowledge of the Java language and
object-oriented principles and can complete the last chapter of the Gridworld case study and have
fun having it will fresh in their mind while taking the AP Exam. This is a great time to give
students more practice with selecting and designing data structures and algorithms on their own.
Within the context of the GridWorld Case Study there are several lab ideas that will help students
further hone in their data structure and algorithm design skills. The main idea is to have them
working within the many classes and to become extremely comfortable with where things are and
how they work. Role playing in order to see the big picture is part of ‘CS-unplugged’ activities.
Seeing and acting out the object responsibilities will help students internalize the complex
intercommunication. I like to be creative and let everyone have fun with it. Professor Levine
shows how to use role-plays.
References/Readings
GridWorld Case Study Parts 3 and 4
Fundamentals Ch 9, Ch 11, Ch 12
Java Methods A & AB, Chapter 12
Assignments/Labs
 • Exercise sets in Parts 3 and 4 of the GridWorld Case Study
 • Fundamentals selected exercises and labs from chapters 9-12
 • Java Methods A & AB, Chapter 12 exercises and labs
Programs and Activities: GridWorld Part 3 and 4; Student Class extension; Field Trip to
commercial robotics lab; Building a deck of cards

 7June 2007

6
Unit 4 Section 2: Weeks 21–23
Quadratic Sorts and Linear/Binary Searching

Objectives [C3] [C4] [C5]
 • Insertion and selection sorts
 • Sequential versus binary searching
 • Introduction to some friendly Big-Oh ideas
 • Recursion revisited

Teaching Strategies
While working with the traditional sorts and searches, I introduce some simple Big
and counting. Big-Oh is not part of the AP CS A Exam, but the counting of stateme
executed is a part. I have the students count comparisons done while sorting and th
results. We discover why comparisons/operations relevant to the dataset size are us
benchmark as opposed to execution speed. I also use the algorithms that they have
now (e.g., reading data, common array algorithms) into their respective Big-Oh fam
This is a good place to work recursion back into the course, since I we can explore
the linear and binary searches can be written both iteratively and recursively.

References/Readings
Java Methods A & AB, Chapters 4 and 13
Big-Oh handout
The xSortLab Applet http://math.hws.edu/TMCM/java/xSortLab

Assignments/Labs
 • Worksheets and sample source code—sorting, searching, recursion, counting

analysis
 • Fundamentals selected exercises and labs from chapters 12-13
 • Java Methods A & AB, Chapters 4 and 13
Programs and Activities: GridWorld Part 4; java.util.ArrayList; Towers of Hanoi
Many Queens problem; Comparing Sort Algorithms.

 June 2007
C3—The course teaches
students to design and
implement computer-based
solutions to problems in a
variety of application areas.
C4—The course teaches
students to use and implement
commonly used algorithms and
data structures.
C5—The course teaches
students to develop and select
appropriate algorithms and data
structures to solve problems.

-Oh concepts
nts being

en graph the
ed as a
studied up to
ily.

further how

iterations,

 extension;

8

7
Unit 4 Section 3: Weeks 24–26
Mergesort
Objectives [C3] [C4] [C5] [C6]
 • Mergesort
 • Recursion
 • (optional) java.util.Arrays and java.util.Collections

Teaching Strategies
Students will gain additional practice with arrays as they explore the n
two sorted lists. In addition, students will once again see a comparison
nonrecursive solution to an algorithm. Now that the students have had
the sorts and searches in the AP curriculum, I like to introduce them to
fun classes, java.util.Arrays and java.util.Collections. By this time in t
quite adept at reading an API; this gives them a bit more practice.

References/Readings
Java Methods A & AB, Chapter 13
Fundamentals chapters 12-13

Assignments/Labs
 • Fundamentals selected exercises and labs from
 chapters 12-13
 • Java Methods A & AB, Chapter 13
 Programs and Activities: Abstract Art- generating recursive pat

Search and Sort team presentations.

8
Weeks 27–29
Review
Objectives
 • Ensure students know what is coming on the AP Exam
 • Earn a 5 on the AP Exam

 June 2007
C6 - The course teaches students to code fluently in
an object-oriented paradigm using the programming
language Java. The course teaches students to use
standard Java library classes from the AP Java subset
delineated in Appendices A and B of the AP
Computer Science Course Description. (Note:
Students who study a language other than Java in AP
Computer Science must also be taught to use Java, as
specified in the AP Java subset.)
ontrivial task of merging
 between a recursive and
 a chance to play with all of
 two more powerful and
he course the students are

ter
C3—The course teaches students to design and
implement computer-based solutions to problems in
a variety of application areas
C4—The course teaches students to use and
implement commonly used algorithms and data
structures.
C5—The course teaches students to develop and
select appropriate algorithms and data structures to
solve problems.

ns, what are fractals?;

9

Appendix 1

WEEKLY CALENDAR
Personal binder to have dated code, weekly worksheets, tests and quizzes corrected- separated into 4 units

Week Unit Section Weekly
reading
Fundamentals

Primary Case Studies-
Announced exercises
due at end of unit or
section

Main topic Weekly Labs- all weekly
exercises and projects
due on Fridays.

Test or Quiz /
Worksheets due
Wednesdays
HW: Additional
1-2 day short
written
assignments TBA

0 1 1 Ch 1 GridWorld part 1 History and ethics/
IDE’s

1 1 1 Ch 1 GridWorld part 1 Hardware and
software/ Binary
representation

Binary cards
HelloWorld (2) and Hello
world with current date
Gridworld exercises part 1

Worksheet 1

2 1 1 Ch 1 GridWorld part 1 Development and
Design process

Gridworld exercises part 1
GUI Window

Quiz 1

3 1 2 Ch 2 Karel J. Robot
Temperature conversion
and modifications ch 2.6
Fundamentals

Why Java?; JVM;
Edit compile and
execute details; IO

Convert
Projects 2-3, 2-4, 2-5 in
teams; Project 2.6 each
student

Worksheet 2

4 1 2 Ch 3 Karel J. Robot- ch9 Language
Elements

Income tax calculator p.79
Count Angles p.88

Quiz 2

5 1 2 Ch 3 Karel J. Robot- ch 10 Syntax and
semantics

Drawing Shapes- Graphics
Class

Worksheet 3

6 2 1 Ch 3 First Steps and Dance
Studio- Methods ch 3
and 11

Programming
errors and
debugging

I/O Projects 3.4 and
modification 3.5 weekly
pay- modify to not accept
invalid data.
Project 3.6- illusion

Quiz 3

7 2 1 Ch 4 First Steps and Dance
Studio- Methods ch 3
and 11

Additional
Operators

Folly of Gambling p. 130

Worksheet 4

8 2 1 Ch 4 Euclid’s GCF
algorithm- Methods ch
4 (P6.5 Fundamentals)
Bank Code JOI

Standard Classes
and Methods

Project 4.6 a population
study

Quiz 4

9 2 2 Ch 4 Rolling Dice If/ Else / While
and for

Project 4.7-4.9 base 2 Worksheet 5

10 2 2 Ch 4 Rolling Dice
modifications
Histograms

Nest Control and
Break statement
Design testing and
debugging

Project 4-13 induced
contrast

Quiz 5

11 2 2 Ch 5 Histograms with
presentations

Internal structure
of Classes and
Objects

Worksheet 6

12 3 1 Ch 5 GridWorld Part 2 Structure and
behavior of
Methods; Scope
and lifetime of
variables

Case Study- Student Class
and test scores and project
5.1 modification adding
constructors and testing
Bank Account project 5.5

Quiz 6

13 3 1 Ch6 GridWorld Part 2 Interfaces- the
client perspective,
Implementation
perspective

Case Study: Weekly Pay
p.206
Exercise 6.3 p. 218 Truth
table

Worksheet 7

14 3 1 Ch 6 Pie Chart – Methods ch
6

Code re-use
through
inheritance;
Abstract classes

Exercise 6.4 Tax table p.
222
Case study: Fibonacci
numbers p. 226

Quiz 7
Ex 6.5 homework

15 3 2 Ch 10 Towers of Hanoi
activities

Logical operators;
Logical errors in
nested if
statements;
Testing and
verification of
loops

6.8 Animations
Ch 10 modifications and
further study of Student
Class and Shapes

Worksheet 8

16 3 2 Ch 7 Common Lisp reading Input/ Output ‘Perfect numbers’ Methods Quiz 8

 10June 2007

ch 8
17 3 2 Ch7 Common Lisp reading

Towers of Hanoi code
Handling number
format exceptions
during input

Thrmometer Class-
Fundamentals ch 7- with
menu

Worksheet 9

18 4 1 Ch 9 GridWorld Part 3 Quiz 9
19 4 1 Ch 9 GridWorld Part 3

Array
manipulation;
Looping through
arrays; declaring
arrays; Two-dim
arrays; Enhanced
for-loops; Arrays,
methods and
objects; Adding
and removing
elements from
arrays

Student Class revisited
Project 9.6 together.
Students in pairs work
together on 9.1-9.4.
Choosing team projects for
short presentation.

Worksheet 10
Field Trip to
commercial
Robotics lab

20 4 1 Ch 11 GridWorld Part 4 Advanced
operations on
strings; Searching;
Sorting

Case study- building a
deck of cards

Quiz 10

21 4 2 Ch 11 GridWorld Part 4 Insertions and
removals;
Working with
arrays of objects;
Class
java.util.ArrayList

Projects
11-1 count words, avg
word length, sentence
length. and 11-2 10 int sort

Open Response Q
2007

22 4 2 Ch 12 Comparing Sort
Algorithms
Fundamentals

Recursive
patterns;
Complexity
analysis;

Towers of Hanoi revisited.
P12.6Case Study: Many
Queens problem. P12.7

Multiple choice
practice quiz 1

23 4 2 Ch 12 Comparing Sort
Algorithms
Fundamentals

Binary search;
Quicksort

Assign presentations
Case Study: Comparing
Sort Algorithms all

Open Response Q
2006

24 4 3 Ch 12 Comparing Sort
Algorithms
Fundamentals

Merge sort Abstract Art- generating
recursive patterns, what are
fractals? P12.8 all

Multiple choice
practice quiz 2

25 4 3 Ch 13 Search and Sort
Presentations

Case Study: Comparing
Sort Algorithms cont. al
Search and Sort
Presentations

Open Response Q
2005

26 4 3 Ch 13 Search and Sort
Presentations

Overview of
Analysis and
Design

Search and Sort
Presentations

Multiple choice
practice quiz 3

27 4 4-
review

Ch 1-4 SATURDAY
SESSION*
2007 Open response A

Review Open Response Q
2004

28 4 4-
review

Ch 5-8 Review Multiple choice
practice quiz 4

29 4 4-
review

Ch 9-12 Review Practice test

Additio
nal
weeks
after
AP test

5 Project Ch 8 Robotics
Robocode
L2Bot and more

Add exercises
with solutions
from ch 1-12
folders

Appliance Applet Project based
assessment
Field trip to
University
Robotics Lab

*One of the last Saturdays of each term, dates to be announced the computer lab will be available.

 11June 2007

Daily Plan
Mondays Receive worksheet or quiz due on Wednesday
 Introduce topic and weekly agenda

Power Point presentation from Fundamentals and Cay Horstmann’s student companion
website:
http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=2215&itemId=0471697044

Tuesdays Lecture/ Computer Lab
Wednesday Computer Lab after worksheet or Quiz turned in
Thursday CS unplugged 5-20 min activity
Friday Computer Lab
Note: Power point projection of all labs in process is available for group discussion. Labs will be
combinations of short exercises, project based exercises, group work and individual work. Collaboration is
generally encouraged.

Fundamentals Chapter Objectives
Chapter 1—Background
Objectives

• Give a brief history of computers.
• Describe how hardware and software make up computer architecture.
• Understand the binary representation of data and programs in computers.
• Discuss the evolution of programming languages.
• Describe the software development process.
• Discuss the fundamental concepts of object-oriented programming.

Lecture Notes
Understand the concept of object-oriented programming (as well as how it differs from top-down design) analogous to
working in teams of experts Business Model: manager, data entry individuals, and accounting specialists. As related to
the concepts of classes, methods, encapsulation, information hiding, polymorphism, and inheritance.

Chapter 2—First Java Programs
Objectives

• Why is Java is an important programming language?
• Understand the Java virtual machine and byte code.
• Choosing a user interface style.
• Know the structure of a simple Java program.
• Write a simple program.
• Edit, compile, and run a program using a Java development environment.
• Format a program to give a pleasing, consistent appearance.
• Understand compile-time errors.
• Write a simple graphics program.

Lecture Notes
The short, simple programs in this chapter are easy to understand and learn. The best way to teach them is to take
students through each step of the process — edit, compile, and run. First, run them off the shelf to show the results, and
then edit one to insert a syntax error to demonstrate what happens during syntax checking. Fix the error, compile, and
run again.
Program code consists of data and operations. Attention to these elements should be paid in each program. The
programs use strings and numbers as data and perform input, arithmetic, and output as operations. Using short, simple
programs that produce immediate results dispels any mystery and enables students to create their own programs. Why
Java? Secure, robust, and portable.

Chapter 3—Syntax, Errors, and Debugging
Objectives

• Construct and use numeric and string literals.
• Name and use variables and constants.

 12June 2007

http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=2215&itemId=0471697044

• Create arithmetic expressions.
• Understand the precedence of different arithmetic operators.
• Concatenate two strings or a number and a string.
• Know how and when to use comments in a program.
• Tell the difference between syntax errors, run-time errors, and logic errors.
• Insert output statements to debug a program.
• Understand the difference between Cartesian coordinates and screen coordinates.
• Work with color and text properties.

Lecture Notes
This chapter examines in depth the syntax and semantics of basic program elements such as variables, primitive data
types, arithmetic expressions, string expressions, and input/output. The chapter also lays the foundation for good
programming habits. These include the use of informative variable names, appropriate program comments, and an
organized program structure. The chapter discusses the differences between syntax errors, semantic errors, and logic
errors and teaches techniques for debugging simple programs with these errors. Finally, two case studies introduce the
ideas of analysis and design before coding a program.

Chapter 4—Introduction to Control Statements
Objectives

• Use the increment and decrement operators.
• Use standard math methods.
• Use if and if-else statements to make choices.
• Use while and for loops to repeat a process.
• Construct appropriate conditions for control statements using relational operators.
• Detect and correct common errors involving loops.

Lecture Notes
This chapter introduces students to the ideas of selection and repetition. Until now, their programs functioned like
pocket calculators — accepting inputs, performing calculations, and displaying results. They now learn how to write
programs that make decisions based on the inputs they receive and that repeat the same set of tasks. This chapter
focuses on the simplest logic of control using if, if-else, while, and for statements. More complex control logic is
examined in Chapter 6.

Chapter 5—Introduction to Defining Classes
Objectives

• Design and implement a simple class from user requirements.
• Organize a program in terms of a view class and a model class.
• Use visibility modifiers to make methods visible to clients and restrict access to data within a class.
• Write appropriate mutator methods, accessor methods, and constructors for a class.
• Understand how parameters transmit data to methods.
• Use instance variables, local variables, and parameters appropriately.
• Organize a complex task in terms of helper methods.

Lecture Notes
This chapter introduces students to class definitions. The view of classes in this chapter is simple: they are repositories
of data and the methods for operating on those data. Nonetheless, many concepts are covered. The more important of
these is data encapsulation. Students should work in small groups to thoroughly discuss the request, analysis, design,
and implementation of the Case Study. When going over the Case Study, students should be able to point out methods,
objects, global variables, local variables, instance variables, and visibility modifiers. More advanced concepts related to
classes, such as inheritance and polymorphism, are deferred until Chapter 10.

Chapter 10—Classes Continued
Objectives

• Know when it is appropriate to include class (static) variables and methods in a class.
• Understand the role of Java interfaces in a software system and define an interface for a set of implementing

classes.
• Understand the use of inheritance by extending a class.
• Understand the use of polymorphism and know how to override methods in a superclass.
• Place the common features (variables and methods) of a set of classes in an abstract class.
• Understand the implications of reference types for equality, copying, and mixed-mode operations.

 13June 2007

• Know how to define and use methods that have preconditions, postconditions, and throw exceptions
Lecture Notes
This chapter shows students the full power of object-oriented programming. Primary topics include the use of
interfaces to specify the behavior of a set of implementing classes and the use of polymorphism and inheritance to
organize and simplify a design and its coding. Along the way, students will learn to use these tools to decompose
software systems into cooperating classes with well-defined roles and responsibilities that include documentation and
error handling.

Chapter 6—Control Statements Continued
Objectives

• Construct complex Boolean expressions using the logical operators && (AND), || (OR), and ! (NOT).
• Construct truth tables for Boolean expressions.
• Understand the logic of nested if statements and extended if statements.
• Test if statements in a comprehensive manner.
• Construct nested loops.
• Create appropriate test cases for if statements and loops.
• Understand the purpose of assertions, invariants, and loop verification.

Lecture Notes
This chapter continues the discussion of control structures by examining logical operators, compound Boolean
expressions, nested selection statements, and nested loops. The focus is on designing correct control statements.
Students learn strategies for testing programs that contain control statements. There are two Case Studies designed to
help students understand these concepts.

Chapter 7—Improving the User Interface
Objectives

• Construct a query-driven terminal interface.
• Construct a menu-driven terminal interface.
• Construct a graphical user interface.
• Format text, including numbers, for output.
• Handle number format exceptions during input.

Lecture Notes
This chapter focuses on aspects of user interface programming. Examples of complex terminal I/O interactions, such as
taking repeated sets of inputs and allowing the user to select options from a menu, are discussed. Students learn how to
format data for structured output and also how to handle format errors in input data. They become aware that the
human user is the most important part of a computer system.

Chapter 9—Introduction to Arrays
Objectives

• Write programs that handle collections of
similar items.

• Declare array variables and instantiate array objects.
• Manipulate arrays with loops, including the enhanced for loop.
• Write methods to manipulate arrays.
• Create parallel arrays and two-dimensional arrays.

Lecture Notes
This chapter introduces the array as a data structure containing elements that are ordered by position. To get students
thinking about these concepts, we consider how to change the Student class to maintain 20 scores rather than just the
three as in Chapter 5. An array would be an effective way of doing this.

Conceptual Overview
This section provides an overview of the logical structure of an array. Important concepts are the elements contained in
an array, its index positions, and its length. Figure 9-1, illustrates these ideas nicely. Focus on the syntax of the
subscript operator and note that its values range from 0 to the length of the array minus 1. Stress the difference between
an array element and its position or index. To keep students from getting confused about arrays, they will draw pictures
like these and label the cells with elements and positions.

Chapter 11—Arrays Continued - Sorting and searching

 14June 2007

Objectives
• Use string methods appropriately.
• Write a method for searching an array.
• Understand why a sorted array can be searched more efficiently than an unsorted array.
• Write a method to sort an array.
• Write methods to perform insertions and removals at given positions in an array.
• Understand the issues involved when working with arrays of objects.
• Perform simple operations with Java’s ArrayList class.

Lecture Notes
This chapter gives students a deeper understanding of arrays and operations on arrays. The chapter also reveals the
limitations of using arrays that lead programmers to develop and use other data structures, such as array lists. Be sure to
spend some time on the Marine Biology Case Study, which not only illustrates these issues, but also reviews basic
principles of software design with classes.

Chapter 12—Recursion, Complexity, and Searching and Sorting
Objectives

• Design and implement a recursive method to solve a problem.
• Understand the similarities and differences between recursive and iterative solutions of a problem.
• Check and test a recursive method for correctness.
• Understand how a computer executes a recursive method.
• Perform a simple complexity analysis of an algorithm using big-O notation.
• Recognize some typical orders of complexity.
• Understand the behavior of a complex sort algorithm such as the quicksort.

Lecture Notes
This chapter introduces recursive problem solving and the use of big-O notation for measuring the complexity of
algorithms. Recursive algorithms and methods provide natural solutions to many problems. Students also need to
become acquainted with the cost (memory) of running algorithms on large data sets. Recursive strategies can be applied
to develop efficient and elegant searching and sorting algorithms, and standard formal techniques apply.

 15June 2007

	Chapter 1—Background
	Objectives
	Lecture Notes

	Chapter 2—First Java Programs
	Objectives
	Lecture Notes

	Chapter 3—Syntax, Errors, and Debugging
	Objectives
	Lecture Notes

	Chapter 4—Introduction to Control Statements
	Objectives
	Lecture Notes

	Chapter 5—Introduction to Defining Classes
	Objectives
	Lecture Notes

	Chapter 10—Classes Continued
	Objectives
	Lecture Notes

	Chapter 6—Control Statements Continued
	Objectives
	Lecture Notes

	Chapter 7—Improving the User Interface
	Objectives
	Lecture Notes

	Chapter 9—Introduction to Arrays
	Objectives
	Lecture Notes

	Chapter 11—Arrays Continued - Sorting and searching
	Objectives
	Lecture Notes

	Chapter 12—Recursion, Complexity, and Searching and Sorting
	Objectives
	Lecture Notes

